晶体生长理论部分
- 格式:ppt
- 大小:478.00 KB
- 文档页数:34
晶体生长原理晶体生长是指晶体在适当条件下从溶液或气相中吸收物质并逐渐增大的过程。
晶体生长是固体物理学和化学中的一个重要研究领域,对于材料科学、地质学、生物学等领域都具有重要意义。
晶体生长的原理涉及到热力学、动力学、表面化学等多个方面的知识,在实际应用中也有着广泛的应用价值。
晶体生长的原理可以归纳为以下几个方面:1. 原子或分子的扩散。
晶体生长的第一步是溶液或气相中的原子或分子通过扩散运动到达晶体表面。
这一过程受到温度、浓度梯度、表面形貌等多种因素的影响。
原子或分子在溶液或气相中的扩散速率决定了晶体生长的速度和形貌。
2. 晶体表面的吸附和解吸。
当原子或分子到达晶体表面时,它们会发生吸附和解吸的过程。
吸附是指原子或分子附着在晶体表面,解吸则是指原子或分子从晶体表面脱离。
吸附和解吸的平衡状态决定了晶体表面的活性,进而影响晶体生长的速率和形貌。
3. 晶体生长的动力学过程。
晶体生长的动力学过程包括原子或分子在晶体表面的扩散、吸附、解吸等过程,以及晶体内部的结构调整和排列。
这一过程受到温度、浓度、界面能等因素的影响,对晶体生长的速率和形貌起着决定性作用。
4. 晶体生长的形貌控制。
晶体生长的形貌受到晶体生长条件和晶体本身特性的影响。
在实际应用中,通过调控溶液或气相中的成分、温度、pH值等条件,可以实现对晶体生长形貌的控制,获得特定形状和尺寸的晶体。
总的来说,晶体生长是一个复杂的过程,受到多种因素的影响。
在实际应用中,通过深入研究晶体生长的原理,可以实现对晶体生长过程的控制,获得具有特定形貌和性能的晶体材料,为材料科学和其他领域的发展提供重要支持。
同时,对晶体生长原理的深入理解也有助于揭示自然界中晶体的形成和演化规律,对地质学、生物学等领域的研究具有重要意义。
晶体生长的真实过程与理论模拟晶体是一种有序结构的凝聚态物质,在科学技术和工业生产中有着广泛的应用。
晶体生长是晶体学的重要分支,其研究对象是如何控制、促进晶体的形成和生长。
然而,晶体生长的真实过程十分复杂,需要运用不同的理论和模拟方法予以探究。
一、晶体生长的真实过程晶体生长的过程一般包括溶液的饱和和过饱和状态、分子在晶体表面的吸附和扩散、晶体表面的缺陷形成和扩张、晶体的生长等多个阶段。
其中,晶体表面的行为对于晶体形态的形成和晶体质量的提高具有重要意义。
1. 溶液的饱和和过饱和状态溶液的饱和度决定了晶体生长的起始条件。
在晶体生长前期,若溶液中的物质浓度低于饱和浓度,则晶体无法形成。
而当溶液中的物质浓度高于饱和浓度,就会形成过饱和状态,这时分子在晶体表面上的吸附和扩散过程增强,晶体生长速率加快。
2. 分子在晶体表面的吸附和扩散在晶体生长初期,一般先形成一个小的“种子晶体”,然后再在其周围不断加长。
分子在晶体表面的吸附和扩散对于晶体的初期生长具有决定性的作用。
当分子在晶体表面上吸附后,会发生扩散现象,即离开吸附位置,向周围运动。
3. 晶体表面的缺陷形成和扩张晶体表面的缺陷是晶体生长过程中不可避免的现象。
晶体表面的缺陷形成主要有以下几种:(1)附加缺陷:晶体表面受到外界扰动,例如震动、光照等,会产生附加缺陷。
(2)基础缺陷:晶体表面固有的未完整的原子排列也会形成缺陷。
这些缺陷会深入吸附分子和周围原子,并促进晶体的生长。
(3)生长缺陷:晶体生长过程中,表面上可能出现某些地方缺陷不断扩张,产生形态不规则的晶体。
4. 晶体的生长晶体的生长是指晶体形态的改变和晶格的不断扩大。
在晶体的生长过程中,分子会在晶体表面寻找最适合自己的位置,当其能量下降时,晶体就会加长。
通过调节溶液的饱和度、温度、压力等因素,可以控制晶体生长的速度和方向,从而得到有特定形态和尺寸的晶体。
二、理论模拟方法晶体生长的真实过程受到多种难以控制的因素的影响,这使得实验方法往往无法完全揭示晶体生长的机制和规律。
晶体生长原理晶体是一种具有高度有序结构的固体材料,其内部的原子、分子或离子排列呈现出一定的规律性。
晶体的生长过程是一个复杂而又精密的物理化学过程,其原理涉及到热力学、动力学、界面化学等多个领域。
本文将就晶体生长的基本原理进行探讨,以期加深对晶体生长过程的理解。
晶体生长的基本原理可以概括为以下几个方面:1. 原子或分子的聚集。
晶体生长的第一步是原子或分子的聚集。
在适当的条件下,如过饱和度、温度、溶液中的物质浓度等方面的变化,会导致原子或分子在某一特定位置聚集成固态结构的种子,从而形成晶核。
2. 晶核的生长。
晶核的形成标志着晶体生长的开始。
晶核的生长是一个动力学过程,其速度取决于溶液中物质的浓度、温度、溶液的流动情况等因素。
在晶核生长过程中,原子或分子会不断地从溶液中聚集到晶核表面,形成新的晶格,使得晶核逐渐增大。
3. 晶体的形态。
晶体的形态受到晶体生长条件的影响。
在不同的生长条件下,晶体会呈现出不同的形态。
例如,在溶液中生长的晶体往往呈现出多面体形态,而在气相中生长的晶体则更倾向于呈现出柱状或板状的形态。
晶体的形态与其生长过程中的动力学条件密切相关。
4. 晶体生长的动力学。
晶体生长的动力学过程涉及到原子或分子在晶体表面的吸附、扩散和结合等过程。
这些过程受到温度、浓度梯度、溶液流动等因素的影响。
在晶体生长的过程中,这些动力学过程相互作用,共同决定了晶体的生长速率和形态。
5. 晶体生长的热力学。
晶体生长的热力学过程主要涉及到溶液中物质的浓度、温度等因素对晶体生长的影响。
热力学条件的变化会导致晶体生长速率的变化,从而影响晶体的形态和尺寸。
总之,晶体生长是一个受到多种因素影响的复杂过程,其原理涉及到热力学、动力学、界面化学等多个领域。
对晶体生长原理的深入理解有助于我们更好地控制晶体的生长过程,从而制备出具有特定形态和性能的晶体材料,为材料科学和工程技术的发展提供有力支持。
晶体生长原理晶体生长原理晶体是由一定数量的分子、离子或原子按照一定的规律排列而成的固体,其结构具有周期性。
晶体生长是指在溶液中,由于某种物质的存在,使得原本无法形成晶体的物质开始有了晶核,并且随着时间的推移,逐渐形成完整的晶体过程。
1. 晶核形成在溶液中,当某些分子或离子达到一定浓度时,它们会聚集在一起形成一个微小的团簇,这就是晶核。
晶核是整个晶体生长过程中最基础和关键的部分。
2. 晶核增长当一个微小的团簇形成后,它会在周围吸收更多的分子或离子,并逐渐增大。
这个过程称为晶核增长。
通常情况下,晶核增长速度比较慢,在正常条件下需要很长时间才能形成一个完整的晶体。
3. 溶液浓度溶液浓度是影响晶体生长速率和质量的重要因素之一。
当溶液中某种物质浓度超过饱和点时,就容易形成晶核。
但是,如果浓度过高,会导致晶体生长速度过快,形成的晶体质量较差。
4. 温度温度也是影响晶体生长速率和质量的重要因素之一。
通常情况下,温度越高,分子或离子的运动能力越强,晶核形成和增长速率也会加快。
但是,如果温度过高,会导致溶液中的物质发生分解或水解等反应,从而影响晶体生长。
5. 搅拌搅拌可以增加溶液中物质之间的接触频率和运动速度,从而促进晶核形成和增长。
但是,在搅拌过程中也会产生涡流等不稳定因素,对晶体的形态产生一定影响。
6. 晶体结构不同种类的物质具有不同的结构特征,在溶液中也会表现出不同的生长规律。
例如硫酸钠和硫酸钾在相同条件下生长出来的晶体形状就有所不同。
7. 光照光照可以通过改变光合作用产物、调节pH值等方式影响溶液中物质的浓度和分布,从而影响晶体生长。
例如,在光照下生长的晶体往往比在黑暗中生长的晶体更透明。
总之,晶体生长是一个复杂的过程,受到多种因素的影响。
通过了解这些因素,我们可以更好地控制晶体生长过程,获得具有理想形态和性质的晶体。
晶体⽣长理论晶体⽣长理论晶体⽣长理论是⽤以阐明晶体⽣长这⼀物理-化学过程。
形成晶体的母相可以是⽓相、液相或固相;母相可以是单⼀组元的纯材料,也可以是包含其他组元的溶液或化合物。
⽣长过程可以在⾃然界中实现,如冰雪的结晶和矿⽯的形成;也可以在⼈⼯控制的条件下实现,如各种技术单晶体的培育和化学⼯业中的结晶。
基础晶体⽣长的热⼒学理论[1]J.W.吉布斯于1878年发表的著名论⽂《论复相物质的平衡》奠定了热⼒学理论的基础。
他分析了在流体中形成新相的条件,指出⾃然体⾃由能的减少有利新相的形成,但表⾯能却阻碍了它。
只有通过热涨落来克服形成临界尺⼨晶核所需的势垒,才能实现晶体的成核。
到20世纪20年代M.福⽿默等⼈发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作⽤(⾮均匀成核)。
⼀旦晶核已经形成(或预先制备了⼀块籽晶),接下去的就是晶体继续长⼤这⼀问题。
吉布斯考虑到晶体的表⾯能系数是各向异性的,在平衡态⾃由能极⼩的条件就归结为表⾯能的极⼩,于是从表⾯能的极图即可导出晶体的平衡形态。
晶体平衡形态理论曾被P.居⾥等⼈⽤来解释⽣长着的晶体所呈现的多⾯体外形。
但是晶体⽣长是在偏离平衡条件下进⾏的,表⾯能对于晶体外形的控制作⽤限于微⽶尺⼨以下的晶体。
⼀旦晶体尺⼨较⼤时,表⾯能直接控制外形的能⼒就丧失了,起决定性作⽤的是各晶⾯⽣长速率的各向异性。
这样,晶⾯⽣长动⼒学的问题就被突出了。
动⼒学理论晶体⽣长的动⼒学理论晶⾯⽣长的动⼒学指的是偏离平衡的驱动⼒(过冷或过饱和)与晶⾯⽣长的速率的关系,它是和晶体表⾯的微观形貌息息相关的。
从20世纪20年代就开始了这⽅⾯的研究。
晶⾯的光滑(原⼦尺度⽽⾔)与否对⽣长动⼒学起了关键性的作⽤。
在粗糙的晶⾯上,⼏乎处处可以填充原⼦成为⽣长场所,从⽽导出了快速的线性⽣长律。
⾄于偏离低指数⾯的邻位⾯,W.科塞⽿与 F.斯特兰斯基提出了晶⾯台阶-扭折模型,晶⾯上台阶的扭折处为⽣长的场所。
由此可以导出相应的⽣长律。
第二章§§§§2.3.1 晶体生长理论的发展和研究对象●半导体材料制备的基本问题--晶体生长●晶体生长理论的发展:晶体生长理论--1669年丹麦学者斯蒂诺(N.Steno)开始研究,主要有:1.晶体平衡形态理论、2.界面生长理论、3.PBC(周期键链)理论和4.负离子配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型.其发展与完善主要体现在:从宏观到微观,从经验统计分析到定性预测,从考虑晶体相到考虑环境相,从考虑单一的晶体相到考虑晶体相和环境相。
晶体生长的定量化,并综合考虑晶体和环境相,以及微观与宏观之间的相互关系是今后晶体生长理论的发展方向。
§2.3.1 晶体生长理论的发展和研究对象●本课程中将着重介绍的理论:9晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Curie-Wulff生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。
晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件。
以晶体平衡形态理论解释晶体生长形态--晶面的发育9界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。
界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用。
以界面生长理论解释晶核长大的动力学模型§2.3.1 晶体生长理论的发展和研究对象●晶体生长基本理论的研究对象:①生长热力学--相平衡及相变晶核的形成与长大等②生长动力学--晶体生长的微观过程生长界面结构等③生长系统中的传输过程--对流热传输质量输运等§2.3.1 晶体生长理论的发展和研究对象晶体是怎样生长出来的?●晶体形成—在物相(气相、液相和固相)转变(相变)的情况下实现。
固相中只有晶体才是真正的固体。