第7讲 离散型随机变量及分布列
- 格式:doc
- 大小:420.00 KB
- 文档页数:25
第07讲离散型随机变量及其分布列和数字特征(精练)第07讲离散型随机变量及其分布列和数字特征(精练)A 夯实基础B 能力提升C 综合素养A 夯实基础一、单选题(2022·江苏·常州市第一中学高二期中)1.下表是离散型随机变量X 的概率分布,则常数a 的值是()X 3456P2a 16a +1216A .16B .112C .19D .12(2022·内蒙古·阿拉善盟第一中学高二期末(理))2.已知随机变量X 的分布列为()24kP X k ==,2,4,5,6,7k =,则()15P X <≤等于()A .1124B .712C .23D .1324(2022·江苏淮安·高二期末)3.已知随机变量X 满足()224E X -=,()224D X -=,下列说法正确的是()A .()()1,1E X D X =-=-B .()()1,1E X D X ==C .()()1,4E X D X =-=D .()()1,1E X D X =-=(2022·辽宁·东北育才学校高二阶段练习)4.某实验测试的规则如下:每位学生最多可做3次实验,一旦实验成功,则停止实验,否则做完3次为止.设某学生每次实验成功的概率为()01p p <<,实验次数为随机变量X ,若X 的数学期望() 1.39E X >,则p 的取值范围是()A .()0,0.6B .()0,0.7C .()0.6,1D .()0.7,1(2022·安徽滁州·高二期末)5.已知随机变量X 的分布列为:X12Pab则随机变量X 的方差()D X 的最大值为()A .14B .12C .1D .2(2022·陕西·西北农林科技大学附中高二期末(理))6.某次国际象棋比赛规定,胜一局得3分,平一局得1分,负一局得0分,某参赛队员比赛一局胜的概率为a ,平局的概率为b ,负的概率为c ([,,0,1)a b c ∈),已知他比赛一局得分的数学期望为1,则ab 的最大值为()A .13B .112C .12D .16(2022·山东东营·高二期末)7.设01m <<,随机变量的分布列为:ξ0m1P3a 13213a -则当m 在()0,1上增大时()A .()D ξ单调递增,最大值为12B .()D ξ先增后减,最大值为13C .()D ξ单调递减,最小值为29D .()D ξ先减后增,最小值为16(2022·全国·高二课时练习)8.设0a >,若随机变量ζ的分布列如下表:ζ-102Pa2a3a则下列方差中最大的是()A .()D ζB .()D ζC .()21D ζ-D .()21D ζ-二、多选题(2022·全国·高二课时练习)9.设离散型随机变量X 的概率分布列为X1-0123P110151101525则下列各式正确的是()A .()1.50P X ==B .()11P X >-=C .()2245P X <<=D .()3010P X <=(2022·全国·高二课时练习)10.2022年冬奥会在北京举办,为了弘扬奥林匹克精神,某市多所中小学开展了冬奥会项目科普活动.为了调查学生对冰壶这个项目的了解情况,在该市中小学中随机抽取了10所学校,10所学校中了解这个项目的人数如图所示:若从这10所学校中随机选取2所学校进行这个项目的科普活动,记X 为被选中的学校中了解冰壶的人数在30以上的学校所数,则()A .X 的可能取值为0,1,2,3B .()103P X ==C .()35E X =D .()3275D X =三、填空题(2022·安徽·歙县教研室高二期末)11.随机变量ξ的分布列如下表,则()5()D X E X +=___________.X012p0.40.2a(2022·广东佛山·二模)12.冬季两项起源于挪威,与冬季狩猎活动有关,是一种滑雪加射击的比赛,北京冬奥会上,冬季两项比赛场地设在张家口赛区的国家冬季两项中心,其中男女混合46⨯公里接力赛项目非常具有观赏性,最终挪威队惊险逆转夺冠,中国队获得第15名.该项目每队由4人组成(2男2女),每人随身携带枪支和16发子弹(其中6发是备用弹),如果备用弹用完后仍有未打中的残存目标,就按残存目标个数加罚滑行圈数(每圈150米),以接力队的最后一名队员到达终点的时间为该队接力的总成绩.根据赛前成绩统计分析某参赛队在一次比赛中,射击结束后,残存目标个数X的分布列如下:X0123456>6P0.150.10.250.20.150.10.050则在一次比赛中,该队射击环节的加罚距离平均为___________米.四、解答题(2022·山东·青岛二中高二阶段练习)13.某校为缓解学生压力,举办了一场趣味运动会,其中有一个项目为篮球定点投篮,比赛分为初赛和复赛.初赛规则为:每人最多投3次,每次投篮的结果相互独立.在A处每投进一球得3分,在B处每投进一球得2分,否则得0分.将学生得分逐次累加并用X表示,如果X的值不低于3分就判定为通过初赛,立即停止投篮,否则应继续投篮,直到投完三次为止.现甲先在A处投一球,以后都在B处投,已知甲同学在A处投篮的命中率为14,在B处投篮的命中率为45,求他初赛结束后所得总分X的分布列.(2022·福建省福州第二中学高二期末)14.甲、乙两名同学与同一台智能机器人进行象棋比赛,计分规则如下:在一轮比赛中,如果甲赢而乙输,则甲得1分;如果甲输而乙赢,则甲得1 分;如果甲和乙同时赢或同时输,则甲得0分.设甲赢机器人的概率为0.6,乙赢机器人的概率为0.5.求:(1)在一轮比赛中,甲的得分X的分布列;(2)在两轮比赛中,甲的得分Y的分布列及期望.B能力提升(2022·重庆巴蜀中学高三阶段练习)15.某大型名胜度假区集旅游景点、酒店餐饮、休闲娱乐于一体,极大带动了当地的经济发展,为了完善度假区的服务工作,进一步提升景区品质,现从某天的游客中随机抽取了500人,按他们的消费金额(元)进行统计,得到如图所示的频率分布直方图.(1)求直方图中a的值;(2)估计该度假区2000名㵀客中,消费金额低于1000元的人数;(3)为了刺激消费,回馈游客,该度假区制定了两种抽奖赠送代金券(单位:元)的方案(如下表),方案A代金券金额50100概率1323方案B代金券金额0100概率1212抽奖规则如下:①消费金额低于1000元的游客按方案A抽奖一次;②消费金额不低于1000元的游客按方案B抽奖两次.记X为所有游客中的任意一人抽奖时获赠的代金券金额,用样本的频率代替概率,求X的分布列和数学期望()E X.(2022·甘肃酒泉·高二期末(理))16.2022年3月,全国大部分省份出现了新冠疫情,对于出现确诊病例的社区,受到了全社会的关注.为了把被感染的人筛查出来,防疫部门决定对全体社区人员筛查核酸检测,为了减少检验的工作量,我们把受检验者分组,假设每组有k个人,把这k个人的血液混合在一起检验,若检验结果为阴性,这k个人的血液全为阴性,因而这k个人只要检验一次就够了;如果为阳性,为了明确这k个人中究竟是哪几个人为阳性,就要对这k个人再逐个进行检验.假设在接受检验的人群中,随机抽一人核酸检测呈阳性概率为0.003P =,每个人的检验结果是阳性还是阴性是相互独立的.核酸检测通常有两种分组方式可以选择:方案一:10人一组;方案二:8人一组.(1)分别求出采用方案一和方案二中每组的化验次数的分布列和数学期望;(2)若该社区约有2000人,请你为防疫部门选择一种方案,并说明理由.(参考数据:80.9970.976=,100.9970.970=)(参考数据:80.9970.976=,100.9970.970=)C 综合素养(2022·江苏·常熟市尚湖高级中学高二期中)17.第24届冬季奥林匹克运动会,即2022年北京冬奥会,于2022年2月4日星期五开幕,2月20日星期日闭幕,北京冬季奥运会设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目;延庆赛区承办雪车、雪橇及高山滑雪项目;张家口赛区的崇礼区承办除雪车、雪橇及高山滑雪之外的所有雪上项目.某国运动队拟派出甲、乙、丙三人去参加自由式滑雪.比赛分为初赛和决赛,其中初赛有两轮,只有两轮都获胜才能进入决赛.已知甲在每轮比赛中获胜的概率均为34;乙在第一轮和第二轮比赛中获胜的概率分别为45和58,丙在第一轮和第二轮获胜的概率分别是p 和32p -,其中304p <<.(1)甲、乙、丙三人中,谁进入决赛的可能性最大;(2)若甲、乙、三人中恰有两人进入决赛的概率为2972,求p 的值,在此基础上,设进入决赛的人数为ξ,求ξ的分布列及数学期望.参考答案:1.C【分析】由随机变量分布列中概率之和为1列出方程即可求出a .【详解】由11112626a a ++++=,解得19a =.故选:C.2.A【分析】根据分布列的概率求解方式即可得出答案.【详解】解:由题意得:()()()()24511152452424P X P X P X P X ++<≤==+=+===.故选:A 3.D【分析】根据方差和期望的性质即可求解.【详解】根据方差和期望的性质可得:()()()222241E X E X E X -=-+=⇒=-,()()()22441D X D X D X -==⇒=,故选:D 4.B【分析】先得到X 的所有可能取值为1,2,3,再求出相应概率,计算得到X 的数学期望,得到不等式后求解即可.【详解】由题意得,X 的所有可能取值为1,2,3,()()()()()()221,3111,1P p X p P P X p p p X p p ====---==-=-,所以()()()221213133E X p p p p p p =⨯+⨯-+⨯-=-+,令()233 1.39E X p p =-+>,解得0.7p <或 2.3p >,又因为01p <<,所以00.7p <<,即p 的取值范围是()0,0.7.故选:B 5.A【分析】由随机变量X 的分布列,求出()D X 的值,并根据二次函数的性质求出最大值.【详解】解:由题意可得1a b +=,()21E X a b b =+=+,则()()()22211]21]D X b a b b b b ⎡⎡=-+⨯+-+⨯=-+⎣⎣,当12b =,()D X 有最大值为14.故选:A .6.B【分析】根据期望公式可得31a b +=,利用基本不等式求乘积的最大值即可.【详解】解:由题意,比赛一局得分的数学期望为3101a b c ⨯+⨯+⨯=,故31a b +=,又[,,0,1)a b c ∈,故3a b +≥,解得112ab ≤,当且仅当3a b =,即11,62a b ==时等号成立.故选:B.7.D【分析】根据方差公式,结合二次函数性质可得.【详解】由题知1211333a a -++=,解得1a =,所以11()0333m m E ξ+=++=所以()222111111()()(1)333333m m m D m ξ+++=⨯+-⨯+-⨯222213(1)[()]9924m m m =-+=-+由二次函数性质可知,()D ξ在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫⎪⎝⎭上单调递增,所以当12m =时,()D ξ有最小值16.故选:D 8.C【分析】利用期望和方差的计算公式及其方差的性质分别求解即可.【详解】由题意,得231a a a ++=,则16a =,所以1115()1026326E ζ=-⨯+⨯+⨯=,()11171026326E ζ=⨯+⨯+⨯=,所以22215151553()10266362636D ζ⎛⎫⎛⎫⎛⎫=⨯--+⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2221717172910266362636D ζ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()5353214()4369D D ζζ-==⨯=,()()292149D D ζζ-==,即()21D ζ-最大,故选:C.9.AC【分析】由分布列中的概率逐一判断即可.【详解】由概率分布列可得()1.50P X ==,故A 正确;()19111010P X >-=-=,故B 错误;()()22435P X P X <<===,故C 正确;()()110P X P X <0==-1=,故D 错误.故选:AC 10.BD【分析】由题知X 的可能取值为0,1,2,且服从超几何分布,进而求分布列,计算期望方差即可判断.【详解】解:根据题意,X 的可能取值为0,1,2,其中了解冰壶的人数在30以上的学校有4所,了解冰壶的人数在30以下的学校有6所,所以,()0246210C C 10C 3P X ===,()1146210C C 2481C 4515P X ====,()2046210C C 622C 4515P X ====所以,X 的概率分布列为:X12P13815215所以,()8412415155E X +===,()222414842320125351551575D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,BD 选项正确,AC 选项错误.故选:BD .11.20【分析】由概率和为1求出a ,先求出()E X 和()D X ,进而求出()51D X +.【详解】由0.40.21,0.4a a ++==得,所以()10.220.41E X =⨯+⨯=,()210.240.4 1.8E X =⨯+⨯=,()22()()(())0.8,5125()250.820D XE X E X D X D X =-=+==⨯=故答案为:2012.390【分析】先求出()E X ,再用2.6150⨯,即可求出答案.【详解】()0.10.50.60.60.50.3 2.6E X =+++++=,则2.6150390⨯=故答案为:390.13.分布列见解析.【分析】判断随机变量的可能取值,根据题意求出分布列即可.【详解】设甲同学在A 处投中的事件为A ,投不中的事件为A ,在B 处投中为事件B ,投不中为事件B ,由已知得()14P A =,()45P B =,则()34P A =,()15P B =,X 的可能取值为:0,2,3,4.所以()31130455100P X ==⨯⨯=,()3413146245545525P X ==⨯⨯+⨯⨯=,()134P X ==,()34412445525P X ==⨯⨯=,所以X 的分布列为:X234P310062514122514.(1)分布列见解析(2)分布列见解析,()0.2E Y =【分析】(1)依题意可得X 的可能取值为1-,0,1,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列;(2)依题意可得Y 的可能取值为2-,1-,0,1,2,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列及数学期望;【详解】(1)解:依题意可得X 的可能取值为1-,0,1,所以(1)(10.6)0.50.2P X =-=-⨯=,(0)0.60.5(10.6)(10.5)0.5P X ==⨯+-⨯-=,(1)0.6(10.5)0.3P X ==⨯-=,所以X 的分布列为X1-01P0.20.50.3(2)解:依题意可得Y 的可能取值为2-,1-,0,1,2,所以2(2)(1)(1)0.20.04P Y P X P X =-==-⨯=-==,(1)(1)(0)220.20.50.2P Y P X P X =-==-⨯=⨯=⨯⨯=,2(0)(1)(1)2(0)(0)20.30.20.50.37P Y P X P X P X P X ===-⨯=⨯+=⨯==⨯⨯+=,(1)(0)(1)20.30.520.3P Y P X P X ===⨯=⨯=⨯⨯=,2(2)(1)(1)0.30.09P Y P X P X ===⨯===,所以Y 的分布列为Y2-1-012P0.040.20.370.30.09所以()20.0410.200.3710.320.090.2E Y =-⨯-⨯+⨯+⨯+⨯=.15.(1)0.00075a =(2)1200人(3)分布列答案见解析,()90E X =【分析】(1)利用频率分布直方图中所有矩形的面积之和为1可求得a 的值;(2)利用频率分布直方图计算出消费金额低于1000元的频率,再乘以2000可得结果;(3)分析可知随机变量X 的可能取值为0、50、100、200,计算出X 在不同取值下的概率,可得出随机变量X 的分布列,进一步可求得()E X 的值.【详解】(1)解:由题意可得()2000.0002520.00050.00120.001251a ⨯⨯++⨯++=,解得0.00075a =.(2)解:由频率分布直方图可知,消费金额低于1000元的频率为()2000.000250.00050.0010.001250.3⨯+++=,于是估计该度假区2000名游客中消费金额低于1000元的人数为20000.61200⨯=人.(3)解:由(2)可知,对于该度假区的任意一位游客,消费金额低于1000元的概率为35,不低于1000元的概率为25,获赠的代金券金额X 的可能取值为0、50、100、200,则()221105210P X ⎛⎫==⨯= ⎪⎝⎭,()31150535P X ==⨯=,()21232213100C =53525P X ⎛⎫==⨯+⋅ ⎪⎝⎭,()22112005210P X ⎛⎫=== ⎪⎝⎭,所以,随机变量X 的分布列如下表所示:X50100200P1101535110所以,()113105010020090105510E X =⨯+⨯+⨯+⨯=.16.(1)方案一:分布列见解析,数学期望为1.300;方案二:分布列见解析,数学期望为1.192;(2)选择方案一,理由见解析【分析】(1)方案一中每组的化验次数为1、11,则概率为100.997、1010.997-;方案二中每组的化验次数为1、9,则概率为80.997、810.997-.根据定义列分布列,求期望即可.(2)先求对应方案的组数,用“总化验次数=组数⨯期望”评估即可(1)设方案一中每组的化验次数为ξ,则ξ的取值为1,11,∴10(1)0.9970.970P ξ===,10(11)10.9970.030P ξ==-=,∴ξ的分布列为:ξ111P0.9700.030()10.970110.030 1.300E ξ=⨯+⨯=.设方案二中每组的化验次数为η,则η的取值为1,9,8(1)0.9970.976P η===,8(9)10.9970.024P η==-=,∴η的分布列为:η19P0.9760.024∴()10.97690.024 1.192E η=⨯+⨯=.(2)根据方案一,该社区化验分组数为200,方案一的化验总次数的期望值为:200()200 1.3260E X =⨯=次.根据方案二,该社区化验分组数为250,方案二的化验总次数的期望为250()250 1.192298E η=⨯=次.∵260298<,∴方案一工作量更少.故选择方案一.17.(1)甲;(2)23p =,ξ的分布列见解析,()233144E ξ=.【分析】(1)分别求出甲、乙、丙三人初赛的两轮均获胜的概率,然后比较概率的大小即可;(2)利用相互独立事件的概率的求法分别求出甲和乙进入决赛的概率、乙和丙进入决赛的概率、甲和丙进入决赛的概率,即可通过甲、乙、三人中恰有两人进入决赛的概率为2972,列方程求解;先确定进入决赛的人数ξ的取值,依次求出每个ξ值所对应的概率,列出分布列,进而利用数学期望公式求解.(1)甲在初赛的两轮中均获胜的概率为:13394416P =⨯=,乙在初赛的两轮中均获胜的概率为:2451582P =⨯=,丙在初赛的两轮中均获胜的概率为:233322P p p p p ⎛⎫=⨯-=-+ ⎪⎝⎭,3043012p p ⎧<<⎪⎪⎨⎪<-<⎪⎩,1324p ∴<<,23139941616P p P ⎛⎫∴=--+<= ⎪⎝⎭,12P P >,∴甲进入决赛的可能性最大;(2)由(1)知,1916P =,212P =,2332P p p =-+,若甲、乙、三人中恰有两人进入决赛,则甲和乙、甲和丙、乙和丙进入决赛,()()()1231231232911172P P P P P P P P P P ∴=⨯⨯-+⨯-⨯+-⨯⨯=,2229139139132911116221622162272p p p p p p ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴⨯⨯--++⨯-⨯-++-⨯⨯-+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,整理得21827100p p -+=,解得23p =或56p =,又1324p << ,∴23p =;则丙在初赛的两轮中均获胜的概率为2323253239P ⎛⎫=-+⨯= ⎪⎝⎭,设进入决赛的人数为ξ,则ξ可能的取值为0,1,2,3,()91570111162972P ξ⎛⎫⎛⎫⎛⎫∴==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()91591591511111111116291629162932P ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()29272P ξ==,()91553162932P ξ==⨯⨯=,∴ξ的分布列如下:ξ123P77211322972532()711295233012372327232144E ξ∴=⨯+⨯+⨯+⨯=.。
离散型随机变量及其分布列一.考点知识总结 1.离散型随机变量随着实验结果变化而变化的变量称为随机变量,通常用字母,,,X Y ξη,…表示. 所有取值可以一一列出的随机变量,称为离散型随机变量 2.离散型随机变量的分布列(1)定义:若离散型随机变量X 可能取的不同值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值i x (i =1,2,3,…,n )的概率()=i i P X x p =则表称为离散型随机变量的概率分布列,简称为的分布列有时为了表达简单,也用等式()=i i P X x p =,i =1,2,3,…,n 表示X 的分布列(2)离散型随机变量的分布列的性质a.0i p ≥(i =1,2,3,…,n ) b.=1ni i p ∑=13.两点分布若随机变量X 服从两点分布,即其分布列为其中()==1p P X 称为成功概率 4.超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X 件次品,则事件{}=X k 发生的概率为()--=k n k M N MnNC C P X k C =,k =0,1,2,…,m,其中m={}min ,M n ,且,,,,n N M N M N n N *≤≤∈,称分布列为超几何分布列二.跟踪练习1.袋中有3个白球和5个黑球,从中任取两个,可以作为随机变量的是A.至少取到1个白球 B.至多取到1个白球 C.取到白球的个数 D.取到的球的个数 2.下列4个表格中,可以作为离散型随机变量的是 A.B.C.D.3.已知随机变量X 的分布列为:()1==,2kP X k k =1,2,…则()2<4P X ≤= A.316 B.14 C.116 D.5164.从4名男生和2名女生中任取3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是5.从装有3个红球和2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X的概率分布为6.在一个口袋中装有黑白两个球,从中随机取一球,记下他的颜色后放回,再取一球,有记下它的颜色,写出这两次取出白球数η的分布列为 7.某一随机变量X 的概率分布如下表,且m+2n=1.2,则m-2n=8.设随机变量X 的概率分布表如下:()()=F x P X x ≤,当x 的取值范围是[1,2)时,()F x =9.已知随机变量η的分布列为若X =2η-3,则()1<X 5P ≤=10.在甲乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采取抽签的方法随机确定各单位的演出顺序(序号1,2,3,4,5,6)求: (1)甲乙两单位的演出序号至少有一个为奇数的概率 (2)甲乙两单位之间的演出单位个数X 的分布列参考答案1—3.CCA 4.455.X =0,P =0.1;X =1,P =0.6;X =2,P =0.3 6.7. (0.2) 8.56 9. (0.6) 10. (1)45(2)。
离散型随机变量及其分布列知识点一.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。
随机变量常用大写字母X,Y …、也可用希腊字母ξ、η等表示,知识点二. 离散型随机变量随机变量X 只能取有限个数值1x ,2x ,…n x 或可列无穷多个数值1x ,2x ,…n x …则称为X 离散随机变量,在高中阶段我们只研究随机变量X 取有限个数值的情形.知识点三、 用随机变量表示随机事件例:写出下列随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果.(1) 在含有10件次品的100件产品中,任意抽取4件,可能含有的次品的件数X 是随机变量. (2) 一袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数ξ是一个随机变量.(3)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:{}4>ξ表示的试验结果是什么?知识点四.离散型随机变量的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的___________,简称________.有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.2.离散型随机变量的分布列具有的性质:(1) ; (2)题型一 离散型随机变量的分布列的性质例1:一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列。
X x 1 x 2 … x i … x nP p 1 p 2 … p i … p n例2:在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为_________.例3:随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ. 求ξ的分布列;例4:设随机变量ξ的分布列为P ⎝⎛⎭⎫ξ=k 5=ak (k =1,2,3,4,5),则常数a 的值为________,P ⎝⎛⎭⎫ξ≥35=________.1.设随机变量X 的分布列如下:X 12 3 4 P16 13 16p则p =________.2.若离散型随机变量X 的分布列为X 0 1 P9c 2-c3-8c则常数c =________,P (X =1)=________.4.已知随机变量X 的分布列为P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( )A.316B.14C.116D.516 5.随机变量X 的分布列如下:X -1 0 1 Pa bc 其中a ,b ,c 成等差数列,则P (|X |=1)等于( )A.16B.13C.12D.236.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.知识点五:两点分布若随机变量X 的分布列如右表, 则这样的分布列称为 . 如果随机变量X 的分布列为_ ,就称X 服从两点分布, 而称_ 为成功概率.例1. 在抛掷一枚图钉的随机试验中,令10X ⎧=⎨⎩,针尖向上;,针尖向下. 如果针尖向上的概率为p ,试写出随机变量X 的概率分布.练习:设某运动员投篮投中的概率为0.3,则一次投篮时投中次数X 的分布列是________.X0 1Pp-1p知识点六:超几何分布一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =k )=C k M C n -k N -MC nN(其中k 为非负整数). 如果一个随机变量的分布列由上式确定,则称X 服从参数为N ,M ,n 的超几何分布.例2.在8个大小相同的球中,有2个黑球,6个白球,现从中取3个,求取出的球中白球个数X 的分布列.变式2. 袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取3个球.(1) 求得分X 的分布列; (2)求得分大于4分的概率.例3.已知随机变量ξ的分布列为 X -2 -1 0 1 2 3 P 112 14 13 112 16 112(1)求112Y X =+1的分布列; (2)求22Y X =-2X 的分布列.§2.1 离散型随机变量的分布列课后巩固1.下列表中能成为随机变量X 的分布列的是( ) X -1 0 1 P 0.3 0.4 0.4 A BX -1 0 1 P0.30.40.3C D 2.某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用X 表示这6人中“三好生”的人数,则概率等于6123735C C C 的是( ) . A.(2)P X = B.(3)P X = C.(2)P X ≤ D.(3)P X ≤3.若()1P X n a ≤=-,()1P X m b ≥=-,其中n m <,则()P m X n ≤≤等于( ).A.)1)(1(b a --B.)1(1b a --C.)(1b a +-D.)1(1a b --4.随机变量X 所有可能的取值为1,2,3,4,5,且()P X k ck ==,则常数c = ,(24)P X ≤≤= . 5.随机变量X 的分布列如下: a ,b ,c 成等差数列,则()1P X == .其中6.已知2Y X =为离散型随机变量,Y 的取值为1,2,…,10,则X 的取值为 .7.设随机变量X 的分布列P (5kX =)=ak ,(1,234,5k =)(1)求常数a 的值; (2)求P (35X ≥); (3)求P (171010X <<);8.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.9.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分,用X 表示分数,求X 的分布列.X 1 2 3 P 0.4 0.7 -0.1 X 1 2 3 P0.20.40.5X -1 0 1 Pabc。
第7讲 离散型随机变量及分布列基础知识整合1.离散型随机变量随着试验结果变化而变化的变量称为□01随机变量,常用字母X ,Y ,ξ,η,…表示.所有取值可以一一列出的随机变量,称为□02离散型随机变量. 2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的□03概率分布列,简称为X 的□04分布列,有时为了表达简单,也用等式□05P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.①□06p i ≥0(i =1,2,…,n ); ②□07 i =1np i =1. 3.常见的离散型随机变量的分布列X 01…mP □11C0M C n-0N-MC n N□12C1M C n-1N-MC n N…□13C m M C n-mN-MC n N1.随机变量的线性关系若X是随机变量,Y=aX+b,a,b是常数,则Y也是随机变量.2.分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.1.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次未击中目标D.第4次击中目标答案 C解析因为击中目标或子弹打完就停止射击,所以射击次数ξ=5,则说明前4次均未击中目标,故选C.2.某人在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为()A.24 B.20C.18 D.4答案 A解析由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24(种).3.已知随机变量X的分布列为P(X=k)=12k,k=1,2,…,则P(2<X≤4)等于()A.316B.14C.116D.516答案 A解析 P (2<X ≤4)=P (X =3)+P (X =4)=123+124=316.4.(2019·山西联考)从一批含有13件正品,2件次品的产品中,不放回地任取3件,则取得次品数为1的概率是( )A.3235B.1235C.335D.235答案 B解析 设随机变量X 表示取出次品的个数,X 服从超几何分布,其中N =15,M =2,n =3,X 的可能的取值为0,1,2,相应的概率为P (X =1)=C 12C 213C 315=1235.5.随机变量ξ的所有可能的取值为1,2,3,…,10,且P (ξ=k )=ak (k =1,2,…,10),则a 值为( )A.1110B.155 C .110 D .55答案 B解析 ∵随机变量ξ的所有可能的取值为1,2,3,…,10,且P (ξ=k )=ak (k =1,2,…,10),∴a +2a +3a +…+10a =1,∴55a =1,∴a =155.6.设随机变量X 的概率分布列为答案 512解析 由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4)=14+16=512.核心考向突破考向一 离散型随机变量分布列的性质例1 (1)(2020·河南南阳摸底)随机变量ξ的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 为常数,则P ⎝ ⎛⎭⎪⎫54<X <134的值为( )A.23 B.34 C.45 D.516答案 D解析 ∵P (X =n )=a n (n +1)(n =1,2,3,4),∴a 2+a 6+a 12+a 20=1,∴a =54.∴P ⎝ ⎛⎭⎪⎫54<X <134=P (X =2)+P (X =3)=54×16+54×112=516. (2)已知随机变量X 的概率分布如下:A.239B.2310C.139D.1310答案 C解析 由离散型随机变量分布列的性质,得23+232+233+…+239+m =1,得m =1-⎝ ⎛⎭⎪⎫23+232+233+…+239=1-2·13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1391-13=⎝ ⎛⎭⎪⎫139=139.离散型随机变量分布列性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内取值的概率时,根据分布列,将所求范围内随机变量的各个取值的概率相加即可,其依据是互斥事件的概率加法公式.[即时训练] 1.某电话亭中装有一部公用电话,在观察使用这部电话的人数时,设在某一时刻,有n 个人正在使用电话或等待使用的概率为P (n ),P (n )与时刻t 无关,统计得到:P (n )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12n ·P (0)(0≤n ≤5),0(n ≥6),那么在某一时刻,这个电话亭一个人也没有的概率P (0)的值为( )A.3263B.3265C.3163D.3253答案 A 解析由P (0)+P (1)+P (2)+P (3)+P (4)+P (5)=1,得P (0)⎝ ⎛⎭⎪⎫1+12+14+18+116+132=1,解得P (0)=3263.2.若随机变量ξ的分布列如下表,则E (ξ)=( )A .q 2+12B .q 2-12 C .1- 2 D .1+ 2答案 C解析 由离散型随机变量分布列的性质,得⎩⎪⎨⎪⎧0≤1-2q ≤1,q 2≤1,12+1-2q +q 2=1,解得q =1-22,所以E (ξ)=-1×12+0×(1-2q )+1×q 2=q 2-12=1- 2.精准设计考向,多角度探究突破 考向二 求离散型随机变量的分布列 角度1 与互斥事件有关的分布列例2 大型亲子真人秀《爸爸去哪儿》(第五季)暖心回归,节目组要求五位明星爸爸在72小时的户外体验中,单独照顾子女的饮食起居,共同完成节目组设置的一系列任务.经过一季13期的录制,六位萌娃Neinei 和Max 、嗯哼、Jasper 、小泡芙、小山竹收获了一大批的粉丝,同时也带动各自星爸的事业发展.在第五季第8期的节目录制中,节目组请来了萌娃的妈妈们,并让萌娃和妈妈们一起玩“选妈妈”游戏:有四位妈妈分别躲在四个外观一模一样的花轿里让萌娃们去猜哪一个花轿里是自己的妈妈.假设各位萌娃都是随机选择,选到每一位妈妈都是等可能的.(1)已知嗯哼的妈妈在某个花轿里,如果给嗯哼两次机会单独去玩“选妈妈”游戏,求他选到自己妈妈的概率;(2)如果四位妈妈所对应的四位萌娃一起选择,一人只选一个花轿,而且每个人选的花轿都不相同,记恰好选到自己妈妈的人数为X,求X的分布列.解(1)记“嗯哼选到自己妈妈”为事件A,则P(A)=14+34×13=12.(2)由题意知X的所有可能取值为0,1,2,4,P(X=4)=1A44=124,P(X=2)=C24A44=14,P(X=1)=C14×2A44=13,P(X=0)=1-P(X=4)-P(X=2)-P(X=1)=38.所以随机变量X的分布列为2例3(2020·正定摸底)某中学根据2006~2018年期间学生的兴趣爱好,分别创建了“摄影”“棋类”“国学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2019年某新生入学,假设他通过考核选拔进入该校的“摄影”“棋类”“国学”三个社团的概率依次为m、13、n,已知三个社团他都能进入的概率为124,至少进入一个社团的概率为34,且m>n.(1)求m与n的值;(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修学分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数的分布列.解(1)依题意,得⎩⎪⎨⎪⎧13mn =124,1-(1-m )⎝ ⎛⎭⎪⎫1-13(1-n )=34,m >n ,解得⎩⎪⎨⎪⎧m =12,n =14.(2)令该新同学在社团方面获得校本选修课学分的分数为随机变量X ,则X 的值可以为0,1,2,3,4,5,6.而P (X =0)=12×23×34=14;P (X =1)=12×23×34=14;P (X =2)=12×13×34=18;P (X =3)=12×23×14+12×13×34=524;P (X =4)=12×23×14=112;P (X =5)=12×13×14=124;P (X =6)=12×13×14=124.X 的分布列如下.离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些?及每一个取值所表示的意义.(2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率.(3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[即时训练] 3.银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列.解(1)设“当天小王的该银行卡被锁定”为事件A,则P(A)=5×4×36×5×4=1 2.(2)依题意,得X所有可能的取值是1,2,3,又P(X=1)=16,P(X=2)=5×16×5=16,P(X=3)=5×4×46×5×4=23.所以X的分布列如下.乙双方每局比赛均从5张扑克牌(3张红桃A,2张黑桃A)中轮流抽取1张,抽取到第2张黑桃A的人获胜,并结束该局比赛.每三局比赛为一轮.(1)若在第一局比赛中甲先抽牌,求甲获胜的概率;(2)若在一轮比赛中规定:第一局由甲先抽牌,并且上一局比赛输的人在下一局比赛先抽,每一局比赛先抽牌并获胜的人得1分,后抽牌并获胜的人得2分,未获胜的人得0分.求此轮比赛中甲得分X的概率分布列.解(1)设“在第一局比赛中甲先抽牌,甲获胜”为事件M,甲先抽牌,甲获胜等价于把这5张牌进行排序,第二张黑桃A排在3号位置或5号位置,共有2+4=6(种),而2张黑桃A 的位置共有C25=10(种).所以P(M)=610=3 5.(2)甲得分X的所有可能取值为0,1,2,3,5.由(1)知在一局比赛中,先抽牌并获胜(后抽牌并输)的概率为35,则后抽牌并获胜(先抽牌并输)的概率为25.当X=0时,即三局甲都输,P(X=0)=25×25×25=8125;当X=1时,即第一局甲胜,二、三局甲输或第二局甲胜,一、三局甲输或第三局甲胜,一、二局甲输,P(X=1)=35×35×25+25×35×35+25×25×35=48125;当X=2时,即第一局甲胜,第二局甲输,第三局甲胜,P(X=2)=35×35×35=27125;当X=3时,即第一局甲输,二、三两局甲都胜或者第一局甲胜,第二局甲胜,第三局甲输,P(X=3)=25×35×25+35×25×35=30125=625;当X=5时,即三局甲都胜,P(X=5)=35×25×25=12125.所以此轮比赛中甲得分X的概率分布列如下.例4(2019·辽宁辽南协作体一模)从某校高三年级中随机抽取100名学生,对其眼视力情况进行统计(两眼视力不同,取较低者统计),得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在[4.1,4.3)的概率为110.(1)求a,b的值;(2)若高校A专业的报考资格为:任何一眼裸眼视力不低于4.9,高校B专业的报考资格为:任何一眼裸眼视力不低于5.0,已知在[4.9,5.1)中有13的学生裸眼视力不低于5.0.现用分层抽样的方法从[4.9,5.1)和[5.1,5.3)中抽取4名同学,4人中有资格(仅考虑视力)报考B专业的人数为随机变量ξ,求ξ的分布列.解(1)由频率分布直方图的性质,得⎩⎨⎧b ×0.2=110,(b +0.75+1.75+a +0.75+0.25)×0.2=1,解得b =0.5,a =1.(2)在[4.9,5.1)中,共有15人,其中5人裸眼视力不低于5.0,在这15人中,抽取3人,在[5.1,5.3)中,共有5人,抽取1人, 随机变量ξ的可能取值为1,2,3,4,P (ξ=1)=C 310C 05C 315=2491,P (ξ=2)=C 210C 15C 315=4591,P (ξ=3)=C 110C 25C 315=2091,P (ξ=4)=C 010C 35C 315=291,∴ξ的分布列如下.超几何分布的特点(1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.(2)超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X 的概率分布.(3)超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.[即时训练] 5.(2020·天津河西新华中学月考)某中学用简单随机抽样方法抽取了100名同学,对其社会实践次数进行调查,结果如下:(1)将频率视为概率,估计该校1600名学生中“社会实践标兵”有多少人?(2)从已抽取的8名“社会实践标兵”中随机抽取4位同学参加社会实践表彰活动.①设A为事件“抽取的4位同学中既有男同学又有女同学”,求事件A发生的概率;②用X表示抽取的“社会实践标兵”中男生的人数,求随机变量X的分布列.解(1)样本中“社会实践标兵”有8人,∴该校学生中“社会实践标兵”估计有1600×8=128人.100(2)8名“社会实践标兵”中有男同学3人,女同学5人.①记A-为“抽取的4位同学全是女同学”,则P(A-)=C45C48=114,∴P(A)=1-P(A-)=1-114=1314.②由题意,得X所有可能的取值为0,1,2,3.P(X=0)=C45C48=114,P(X=1)=C13C35C48=37,P(X=2)=C23C25C48=37,P(X=3)=C33C15C48=114.则X的分布列如下.1.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为()A.X=4 B.X=5C.X=6 D.X≤4答案 C解析第一次取到黑球,则放回1个球,第二次取到黑球,则放回2个球,…,共放了五回,第六次取到了红球,试验终止,故X=6.2.一个人有5把钥匙,其中只有一把可以打开房门,他随意地进行试开,若试开过的钥匙放在一旁,试过的次数ξ为随机变量,则P(ξ=3)=()A.35 B.15C.25 D.3!5!答案 B解析 ξ=3表示第3次恰好打开,前2次没有打开,所以P (ξ=3)=A 24A 35=15.3.若随机变量X 的分布列为A .(-∞,2]B .[1,2]C .(1,2]D .(1,2)答案 C解析 由随机变量X 的分布列,得P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].4.(2019·淄博一中模拟)设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12 D.23答案 B解析 设P (ξ=1)=p ,则P (ξ=0)=1-p .依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.5.(2019·新疆乌鲁木齐模拟)口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A.13B.23 C .2 D.83答案 D解析 因为口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,所以取出的球的最大编号X 的可能取值为2,3,所以P (X =2)=1C 23=13,P (X =3)=C 12C 11C 23=23,所以E (X )=2×13+3×23=83.6.已知离散型随机变量X 的分布列P (X =k )=k15,k =1,2,3,4,5,令Y =2X -2,则P (Y >0)=( )A.715B.815C.1115D.1415答案 D解析 由已知Y 取值为0,2,4,6,8,且P (Y =0)=115,P (Y =2)=215,P (Y =4)=315=15,P (Y =6)=415,P (Y =8)=515=13.则P (Y >0)=P (Y =2)+P (Y =4)+P (Y =6)+P (Y =8)=1415.7.箱子里有2个黑球,1个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A.13B.881C.23D.3281 答案 B解析 由题意知,第4次取球后停止是当且仅当前3次取的球是黑球,第4次取的球是白球的情况,此事件发生的概率为⎝ ⎛⎭⎪⎫233×13=881.8.一个坛子里装有编号为1,2,3,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球.若从中任取2个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为( )A.122B.111C.322D.211答案 D解析 一类是取到2球号码均为偶数且是红球,有C 23种取法;另一类是取到2球号码为一奇一偶且2球为红球,有C 13C 13种取法.因此所求的概率P =C 23+C 13C 13C 212=211.故选D.9.(2020·江西赣州摸底)一袋中装有5个球,编号为1,2,3,4,5,在袋中同时取出3个,以ξ表示取出的三个球中的最小号码,则随机变量ξ的分布列为( )A.解析 随机变量ξ的可能取值为1,2,3,P (ξ=1)=C 24C 35=35,P (ξ=2)=C 23C 35=310,P (ξ=3)=C 22C 35=110.故选C.10.如图所示,用K ,A 1,A 2三类不同的元件连接成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作,已知K ,A 1,A 2正常工作的概率依次是0.9,0.8,0.8,则系统正常工作的概率为( )A.0.960 B.0.864C.0.720 D.0.576答案 B解析A1,A2同时不能工作的概率为0.2×0.2=0.04,所以A1,A2至少有一个正常工作的概率为1-0.04=0.96,所以系统正常工作的概率为0.9×0.96=0.864.故选B.11.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432C.0.36 D.0.312答案 A解析3次投篮投中2次的概率为P(k=2)=C23×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C23×0.62×(1-0.6)+0.63=0.648.故选A.12.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…(取后不放回),直到两人中有一人取到白球时停止,每个球每一次被取出的机会是等可能的,则甲取到白球的概率为()A.2235 B.2135C.37 D.1335答案 A解析设袋中原有n个白球,由题意,得17=C2nC27=n(n-1)27×62=n(n-1)7×6,所以n(n-1)=6,解得n=3(舍去n=-2),即袋中原有3个白球.用ξ表示取球终止时所需要的取球次数.则ξ的可能取值为1,2,3,4,5.P(ξ=1)=37,P(ξ=2)=4×37×6=27,P(ξ=3)=4×3×37×6×5=635,P(ξ=4)=4×3×2×37×6×5×4=335,P(ξ=5)=4×3×2×1×37×6×5×4×3=135.因为甲先取,所以甲只有可能在第1次,第3次和第5次取球,记“甲取到白球”的事件为A,则P(A)=P(“ξ=1”“ξ=3”或“ξ=5”).又事件“ξ=1”“ξ=3”“ξ=5”两两互斥,所以P(A)=P(ξ=1)+P(ξ=3)+P(ξ=5)=37+635+1 35=2235.13.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P(ξ=2)=________.答案310解析ξ的可能取值为0,1,2,3,所以P (ξ=2)=C 13C 12C 14+C 23C 22C 24C 26=2790=310. 14.数字1,2,3,4任意排成一排,若数字K 恰好出现在第K 个位置上,则称为一个巧合,若巧合个数为ξ,则P (ξ=0)=________.答案 38解析 ξ=0,表示没有巧合,有以下几种:所以P (ξ=0)=9A 44=924=38.15.(2019·大连模拟)一个袋子里有2个白球、3个黑球、4个红球,从中任取3个球恰好有2个球同色的概率为________.答案 5584解析 记A ={取出的3个球中恰好有2个白球},B ={取出的3个球中恰好有2个黑球},C ={取出的3个球中恰好有2个红球},则P (A )=C 22C 17C 39=112,P (B )=C 23C 16C 39=314,P (C )=C 24C 15C 39=514.A ,B ,C 三个事件两两互斥,则P (取出的3个球中恰好有2个球同色)=P (A +B +C )=P (A )+P (B )+P (C )=112+314+514=5584.16.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则P(ξ2≥3)-P(ξ1≥3)=________.答案-310解析赌金的分布列如下,则P(ξ2≥3)-P(ξ1≥3)=15+110-15-15-15=-310.17.(2019·济南模拟)某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.解(1)设事件A:选派的3人中恰有2人会法语,则P(A)=C25C12C37=4 7.(2)依题意知X的取值为0,1,2,3,P(X=0)=C34C37=435,P(X=1)=C24C13C37=1835,P(X=2)=C14C23C37=1235,P(X=3)=C33C37=135,∴X的分布列为则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3道题,每人答对其中2道题就停止答题,即闯关成功.已知在6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是23.(1)求甲、乙至少有一人闯关成功的概率; (2)设甲答对题目的个数为ξ,求ξ的分布列. 解 (1)设甲、乙闯关成功分别为事件A ,B ,则P (A )=C 14C 22C 36=420=15,P (B )=⎝ ⎛⎭⎪⎫1-233+C 23×⎝ ⎛⎭⎪⎫1-232×⎝ ⎛⎭⎪⎫231 =127+29=727,则甲、乙至少有一人闯关成功的概率是 1-P (A B )=1-P (A )P (B )=1-15×727=128135. (2)由题知ξ的可能取值是1,2.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12+C 34C 36=45,则ξ的分布列为如下.A 组最小数为a 1,最大数为a 2;B 组最小数为b 1,最大数为b 2.记ξ=a 2-a 1,η=b 2-b 1.(1)求ξ的分布列;(2)令C 表示事件“ξ与η的取值恰好相等”,求事件C 发生的概率P (C ). 解 (1)ξ的所有可能取值为2,3,4,5.将6个正整数平均分成A ,B 两组,不同的分组方法共有C 36=20(种),所以ξ的分布列如下.不同的分组方法有2种;ξ和η恰好相等且等于3时,不同的分组方法有2种; ξ和η恰好相等且等于4时,不同的分组方法有4种. 所以P (C )=820=25.20.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列.解 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能的值为:0,10,50,200,且P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37×13=1105, P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37×23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37×13=12105=435,P(X=0)=1-1105-2105-435=67.综上知X的分布列如下.。