第十八章 勾股定理小结与复习
- 格式:doc
- 大小:202.00 KB
- 文档页数:5
八年级下册 .勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅== DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解. 解答: 解:设BN =x ,由折叠的性质可得DN =AN =9﹣x , ∵D 是BC 的中点, ∴BD =3,在Rt △ABC 中,x 2+32=(9﹣x )2, 解得x =4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。
第十八章勾股定理本章小结小结1 本章概述本章主要学习勾股定理、勾股定理的逆定理及它们的应用.通过从特殊到一般的探索过程过程验证了直角三角形三边之间的数量关系——勾股定理,又由生活实例及三角形全等方法验证由三边关系得到直角三角形——勾股定理的逆定理.学习时应注意区分并把它们运用到实际问题中,同时了解定理、互逆命题、互逆定理的相关内容.小结2 本章学习重难点【本章重点】会灵活运用勾股定理进行计算及解决一些实际问题;掌握勾股定理的逆定理的内容及其证明过程,并会应用其解决一些实际问题.【本章难点】掌握勾股定理探索过程,并掌握其适用范围;理解勾股定理及其逆定量.【学习本章注意的问题】在学习本章内容的过程中,主要注意勾股定理及其逆定理的应用.在解决实际问题的过程中常用下列方法:(1)直接法;(2)转化法;(3)构造图形法(即构造直角三角形以达到解题的目的);(4)图形结合法;(5)数形结合法;(6)方程的思想方法.小结3 中考透视本节知识在中考中以考查已知直角三角形的两边求第三边,运用勾股定理解决实际问题为主.其中定理在实际生活中的应用是热点,一般以选择题、填空题或解答题的形式出现,有时也与其他知识一起综合命题.知识网络结构图专题总结及应用一、知识性专题专题1 勾股定理及其逆定理的应用【专题解读】要证明以三条线段(或线段所在的直线)为边的三角形是直角三角形,应设法求出三边的长或关系式,利用勾股定理的逆定理证明.例1 如图18-69所示,在等腰直角三角形ABC的斜边上取两点M,N,使∠MCN=45°,设AM=a,MN=x,BN=b,判断以x,a,b为边长的三角形的形状.分析要判断三角形的形状,就应设法将x,a,b放到一个三角形中,由于∠MCN=45°,因此可过点C作CD⊥MC,截取CD=CM,这样就可以得到全等的三角形,并把x,a,b放到一个三角形中,进而利用勾股定理的逆定理判断三角形的形状.解:作CD⊥CM,且CD=CM,连接ND,BD,∵AC⊥BC,CD⊥CM,∴∠ACB=∠MCD=90°.∴∠ACM=∠BCD.又∵AC=BC,CM=CD,∴△CAM≌△CBD.∴∠CBD=∠A=45°,AM=BD=a.∴CM=CD,∠MCN=∠DCN=45°,CN=CN,∴△MCN≌△DCN. ∴ND=MN=x.∴∠CBA=∠CBD=45°, ∴∠NBD=∠CBA+∠CBD=90°.∴NB2+BD2=ND2,即b2+a2=x2,∴△NBD为直角三角形,即以x,a,b为边长的三角形是直角三角形.【解题策略】巧用已知条件构造全等三角形,将线段x,a,b放到一个三角形中,为应用勾股定理的逆定理创造了条件.例2 李老师让同学们讨论这样一个问题:如图18-70所示,有一个长方体盒子,底面正方形的边长为2 cm,高为3 cm.在长方体盒子下底面的A点有一只蚂蚁,它想吃到上底面的F点处的食物,则怎样爬行路程最短?最短路程是多少?过了一会儿,李老师问同学们答案,甲生说:先由A点到B点,再走对角线BF.乙生说:我认为应由A先走对角线AC,再由C点到F点.丙生说:将长方形ABCD与长方形BEFC展开成方长形ABFG,利用勾股定理求AF的长.哪位同学的说法正确?还有其他方法吗?若有,请叙述出来,并说明理由.(参考数据:29≈5.392)分析要使蚂蚁爬行的路程最短,可直接连接AF,再求出AF,但AF在盒子里面,不符合题目要求,甲生和乙生的方法类似,只是顺序不同;丙生和丁生的方法类似,只是长方形的长、宽不同,若在丙、丁的长方形中分别画出甲、乙的路线,则发现丙生和丁生的办法都符合要求,但究竟哪个路程最短,就需要计算了.解:按丙生的办法:将长方形ABCD与长方形BEFC展开成长方形AEFD,如图18-71所示,则AE=AB+BE=4 cm,EF=3 cm,连接AF,在Rt△AEF中,AF2=AE2+EF2=42+32=25,∵AF=5 cm.连接BF,∵AF<AB+BF,∴丙的方法比甲的好.按丁生的办法:将长方形ABCD与正方法CFGD展开成长方形ABFG,如图18-72所示,则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF.在Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,∴AF≈5.39(cm).连接AC,∵AF<AC+CF,∴丁的方法比乙的好.比较丙生与丁生的计算结果,丙生的说法正确.二、规律方法专题专题2 利用勾股定理解决折叠问题【专题解读】折叠问题与轴对称和图形全等是密不可分的.做题时一定要抓住这一点,以免有无从下手之感.例3 如图18-73所示,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD 于E,AD=8,AB=4,求△BED的面积.分析由于12ABCS DE AB=,所以只要求出DE的长即可,而DE=BE,AE=AD-DE=8-BE,在Rt△ABE中,利用勾股定理列方程求解.解:∵AD∥BC,∴∠2=∠3.∵△BC′D与△BCD关于直线BD对称, ∴∠1=∠2,∴∠1=∠3,∴EB=ED.设EB=x,则ED=x,AE=AD-ED=8-x.在Rt△ABE中,AB2+AE2=BE2.∴42+(8-x) 2=x2,∴x=5,∴DE=5.∴11541022ABCS DE AB==⨯⨯=.专题3 利用面积关系解决问题【专题解读】利用勾股定理求出直角三角形的边长,进而求出面积,再利用面积的关系列出方程,从而解决问题.例4 如图18-74所示,在三角形ABC 中, ∠C =90°,两直角边AC =6,BC =8,在三角形内有一点P ,它到各边的距离相等,则这个距离是 ( )A.1B.2C.3D.无法确定分析 要想直接计算,需找出表示这个相等距离的线段,由角平分线的性质可知,点P 应是△ABC 各角平分线的交点,再由面积关系列方程求解.设P 点到三边的距离为x ,连接P A,PB,PC .在Rt △ABC 中,AC =6,BC =8,所以AB 2=AC 2+BC 2=62+82=36+64=100.所以AB =10.又因为ABC PAB PAC PBC SS S S =++, 所以11116810682222x x x ⨯⨯=⨯⨯+⨯⨯+⨯⨯. 即48=10x +6x +8x .所以x =2,故选B.【解题策略】这是一道方程与几何图形相结合的数学题,在几何图形问题中经常涉及解方程、求面积等相关计算.本题考查了勾股定理的实际应用.三、思想方法专题专题4 建模思想【专题解读】能运用勾股定理解决简单的实际问题,将其转化为数学问题,建立直角三角形的模型,体现了学数学、用数学的思想,通过建模解决问题.例5 一船在灯塔C 的正东方向8海里的A 处,以20海里/时的速度沿北偏西30°方向行驶.(1) 多长时间后,船距灯塔最近?(2) 多长时间后,船到灯塔的正北方向?此时船距灯塔有多远?(其中:162-82≈13.92)分析 最近距离就是点C 到船航线AB 的垂线段的长度,所以构造出直角三角形,再运用勾股定理及逆定理即可.解: (1)如图18-75所示,由题意可知,当船航行到D 点时,距灯塔最近,此时,CD ⊥AB .因为∠BAC =90°-30°=60°,所以∠ACD =30°.所以AD =11822AC =⨯=4(海里). 又因为4÷20=0.2(小时)=12(分),所以12分后,船距灯塔最近.(2)当船到达灯塔的正北方向的B 点时, BC ⊥AC .此时∠B =30°,所以AB=2AC =2×8=16(海里).所以16÷20=0.8(小时)=48(分).所以BC 2=AB 2-AC 2=162-82≈13. 92.所以BC ≈13.9(海里).所以48分钟后,船到达灯塔的正北方向,此时船距灯塔约13.9海里.【解题策略】在运用勾股定理及其逆定理时,一定要区别它们各自的适用条件,不要混淆.例6 如图18-76所示,如果电梯的长、宽、高分别是1.2 m,1.2 m,2.1 m,那么能放到电梯内的竹竿的最大长度是多少?分析 所放竹竿的最大长度应是图中线段AB 的长度,利用勾股定理即可求解.解:连接AB ,BC ,在Rt △ABC 中,BC 2=1.22+1.22=2.88,AC 2=2.12=4.41,∴AB 2=BC 2+AC 2=2.88+4.41=7.29.∴AB =2.7 m.∴能放入电梯内的竹竿的最大长度是2.7 m.例7 有一圆柱形油罐,如图18-77(1)所示,要从A 点环绕油罐建梯子,正好到A 点正上方B 点,则梯子最短需多少米?(已知油罐口的周长是12 m ,高AB 是5 m )分析 把圆住体沿AB 剪开,平铺在平面上,就会得到矩形ABB ′A ′,对角线AB ′就是梯子的长度,如图18-77(2)所示.解:假设将圆柱体的侧面沿AB 剪开铺平,则ABB ′A ′为长方形AB=A ′B ′=5 m,AA ′=BB ′=12 m,∠BAA ′=∠A ′=∠A ′B ′B =90°,因此沿AB ′建梯子,材料最省,梯子最短.在Rt △AA ′B ′中,AB ′=答:梯子最短需13 m. 2011中考真题精选1. (2011内蒙古呼和浩特,9,3)如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为( )A. 14B. 15C. 23D. 32点评:本题考查了勾股定理,解题的关键是作出以A 为圆心,AB 长为半径的圆,构建直角三角形,从而求解.2.(2011四川达州,6,3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()A、5B、4C、3D、2考点:垂径定理;勾股定理。
第十八章目录一、勾股定理 (2)考向1:勾股定理的直接用法 (3)考向2:勾股定理的构造应用 (3)考向3:用勾股定理求两点之间的距离问题 (4)考向4:用勾股定理求最短问题 (4)考向5:利用勾股定理作长为n的线段 (5)二、勾股定理的逆定理 (6)考向6:利用勾股定理逆定理判断垂直 (7)考向7:勾股定理和逆定理并用 (7)考向8:旋转问题 (7)考向9:折叠问题 (8)第十八章勾股定理知识点总结与典型例题一、勾股定理1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=2、要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c,b,a )(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 3、勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:(课本P72)方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=c ba H GFE D CB A bacbaccabcab方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证4、勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
八年级下册 .勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅== DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解. 解答: 解:设BN =x ,由折叠的性质可得DN =AN =9﹣x , ∵D 是BC 的中点, ∴BD =3,在Rt △ABC 中,x 2+32=(9﹣x )2, 解得x =4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。
八年级第18章知识点总结八年级第18章知识点内容涉及到勾股定理以及三角形的性质,通过本章学习,我们能够加深对于勾股定理的理解,熟悉各种三角形的性质,从而能够更好地去解决与三角形相关的问题。
一、勾股定理勾股定理是指在直角三角形中,直角边的平方等于另外两条边的平方和。
我们可以用字母表达式来表示这个定理:c² = a² + b²其中,c表示直角边中的斜边,a和b则分别表示其他两条边。
勾股定理有许多应用。
例如,我们可以用勾股定理计算直角三角形的斜边的长度;或者在一个非直角三角形中,如果我们知道角度和其中两条边的长度,那么我们就可以用勾股定理来计算出第三边的长度。
二、三角形的性质1.等边三角形等边三角形是指三条边的长度都相等的三角形。
在等边三角形中,三个角度都相等,并都等于60度。
2.等腰三角形等腰三角形是指两条边的长度相等的三角形。
在等腰三角形中,两个角度相等。
3.直角三角形直角三角形是指其中一个角度是90度的三角形。
在直角三角形中,直角边上的角度是90度,其他两个角度则相加等于90度。
4.锐角三角形锐角三角形是指其中三个角度都小于90度的三角形。
5.钝角三角形钝角三角形是指其中一个角度大于90度的三角形。
以上五种三角形都各自有不同的性质和应用,我们需要针对不同的问题和场合,进行选择和使用。
三、总结本章内容主要涉及到勾股定理以及各种三角形的性质。
我们通过学习这些知识,能够更好地去解决各种三角形相关的问题。
在学习过程中,我们需要不断地练习,熟练掌握各种公式和定理,从而能够更好地应用到实际问题中去。
八年级下册第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。
A CB D 新课标人教版八年级数学知识点总结 第十八章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方,即如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC =21AB ∠C=90°(3)直角三角形斜边上的中线等于斜边的一半。
∠ACB=90° 可表示如下: ⇒CD =21AB = BD = AD D 为AB 的中点5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB = 90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=26、常用关系式由三角形面积公式可得:A B ·CD=AC ·BC7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
8、命题、定理、证明⑴命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
第十八章 勾股定理小结与复习考点呈现一、运用勾股定理求边长例1 如图1,在Rt △ABC 中,∠C =90°,AC =8,BC=6,按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD 的长为__________.解析:由勾股定理可求AB =10.通过折叠,有BC ˊ=BC=6,故AC ˊ=AB -BC ˊ=4.设DC =DC =x ,在Rt △ADC ˊ中,由勾股定理得x 2+42=(8-x )2,解得x =3.在Rt △BCD 中,由勾股定理可得 53632222=+=+=CB CD BD .点评:本题融勾股定理于折叠的动态过程中,把轴对称与勾股定理有机结合起来.解决问题的关键是抓住折叠过程中对应量,运用勾股定理建立方程.二、运用勾股定理作无理数长度的线段例2 图2是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出长度为5的线段__________条. 解析:由于长度为5的线段是以直角边长为1,2的直角三角形的斜边,在“田字格”中最多可以构造8个这样的三角形.故有8条长度为5的线段.点评:本题考查了运用勾股定理做无理数长度的线段,关键是找到满足斜边长度为5的直角三角形.三、应用勾股定理解决实际问题例3 如图3,铁路上A ,B 两站(可以看作直线上的两点)相距25 km ,C ,D 为两个村庄(可以看作两个点),AB DA ⊥于A ,AB CB ⊥于B.已知DA=15 km ,CB=10 km ,现在要在铁路AB 上建设一个收购站E ,使C ,D 为两个村庄到E 站的距离相等,则E 站距离A 村多远?解析:设AE=x km ,则)25(x BE -= km .在ADE Rt ∆中,222AE AD DE +=,即22215+=x DE .在ADE Rt ∆中,222BC BE CE +=,即22210)25(+-=x CE .因为DE CE =,所以 222210)25(15+-=+x x ,图2E D C B A A C ’ D CB解得x=10.即E 站距离A 村10 km .点评:本题的考查了学生关建立数学模型以及运用勾股定理解决实际问题的能力.四、勾股定理的逆定理例4 下列四组线段中,可以构成直角三角形的是( )A .1,2,3 B, 2,3,4 C .3,4,5 D .4,5,6解析:根据勾股定理的逆定理可知,当已知线段长度时,如果最短的两条线段的平方和等于最长线段的平方,则以这三条线段为边可构成直角三角形.因为12+22≠32,,2 2+32≠42,32+42=52,42+52≠62,所以以3,4,5为边能构成一个以5为斜边的直角三角形. 故本题应选C.点评:本题考查了学生运用勾股定理的逆定理判定直角三角形,关键是验证两条较短线段的平方和是否等于最长线段的平方.误区点拨一、忽视定理存在的条件例1 在边长都为整数的ABC ∆中,AB AC >,如果cm AC 4=,cm BC 3=,求AB 的长.错解:由AB AC >,由勾股定理,得222AB AC BC =+, 即)(5342222cm BC AC AB =+=+=.剖析:此题没有指明ABC ∆是直角三角形,因此不能使用勾股定理求解,只能利用三角形三边关系的定理求解.正解:根据三角形三条边的关系定理:三角形两边的和大于第三边,得A C AB AC <<+.即47AB <<.从而得AB 等于5cm 或6cm .二、忽视斜边直角边分类例2 在直角ABC ∆中,5=a ,12=b ,则第三边c 的长度为 .错解:13剖析:在不确定斜边的情况下,应该注意分类讨论,即第三边c 有可能是斜边,也有可能是直角边.正解:当c 是斜边时,有)(131252222cm b a c =+=+=; 当c 是直角边时,有)(1195122222cm a b c =-=-=.故第三边c 的长度为13 cm 或cm 119.三、审题不仔细,受思维定势影响例3 在ABC ∆中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,且满足2))((c b a b a =-+,则( )A. A ∠是直角B. B ∠是直角C. C ∠是直角D. ABC ∆不是直角三角形错解:选C.剖析:因为常见的直角三角形在表示时,一般讲直角标注为C ∠,因而有许多同学就习惯性的认为C ∠就一定是直角,导致错误.正解:因为2))((c b a b a =-+,所以222c b a =-,即222a c b =+,所以ABC ∆是直角三角形,且A ∠是直角.故选A.四、对互逆定理、互逆命题的理解错误例4 “定理“对顶角相等”有逆定理吗?若有,请你写出其逆定理,若没有,请说明理由。
”错解:定理“对顶角相等”有逆定理,其逆定理是:相等的角是对顶角.剖析:对于一个命题而言,不管命题是否正确,它都有逆命题,而定理是要经过证明被确认为正确的命题,显然,只有原命题正确,其逆命题也正确的情况下才有逆定理.正解:因为命题“对顶角相等”的逆命题是“相等的角是对顶角”,显然,“相等的角是对顶角”是假命题,所以定理“对顶角相等”没有逆定理. 基础盘点1.勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么 ,即直角三角形两直角边的 等于斜边的 .2. 勾股定理逆定理:如果三角形的三边a ,b ,c 满足 ,那么这个三角形是直角三角形.3. 叫做命题, 叫做逆命题, 互逆命题, 叫做定理, 叫做逆定理。
4. 满足的三个正整数叫做勾股数,常见的勾股数有 、 等.课堂检测1.在ABC ∆中,︒=∠90A ,则下列式子不成立的是( )A .222AC AB BC += B .222BC AC AB +=C .222AC BC AB -=D .222AB BC AC -=2.下列各组数据不能作为直角三角形的三边长的是( )A .a=3,b=4,c=5B . a=4,b=7,c=8C .a=5,b=12,c=13D .a=1,b=1,c=23.若等腰三角形底边长为cm 10,腰长为cm 13,则底边上的高为( )A .5 cmB .12cmC .cm 1360D .cm 13120 4.如图1,点A 表示的实数为( ) A .2 B .21- C .12- D .12+ 5. 甲、乙两人分别从点A 出发,甲向正东方向步行,每小时3.5 km ,乙向正南方向骑自行车,每小时行12km ,则两小时后两人相距 km.A 0 -1 1 图16.如图2,一棵树距离地面10米的点A 处有两只猴子,其中一只猴子爬下树走到距离树20米的池塘D 处,另一只猴子爬到树顶后直接跃向池塘的D 处,如果两只猴子所经过的距离相等,试问这棵树有多高?跟踪训练1.下列每一组数据中的三个数值分别为三角形的三边长,不能..构成直角三角形的是( ) A. 3,4,5 B. 6,8,10 C. 3,2,5 D. 5,12,132.图1中甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是( )A .74B .7 6C .78D . 803.图2中,每个小正方形的边长为1,△ABC 的三边a ,b ,c 中,长度为无理数的条数为( )A .0B .1C .2D .34.某楼梯的侧面视图如图3所示,其中13=AB 米,高5=BC 米,90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 米.5.小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?6.如图4,四边形ABCD 中,︒=∠90B ,AB=4cm ,BC=3cm ,AD=13cm ,CD=12cm .求四边形ABCD 的面积.DCB A图3 B C A 图2 图2 C B A D参考答案基础盘点:略.课堂检测:1.B 2.B 3.B 4.C 5.256.设树AC 的高为x 米,由题意AB=10,BD=20.AC+CD=AB+BD=30,即CD=30-x .在BCD Rt ∆中,根据勾股定理222BC BD BC =+,所以222)30()10(20x x -=++,解得x=5.BC=10+5=15. 所以这棵树的高度为15米.跟踪训练:1.C 2.B 3.B 4.175.设城门高为x 米,则竿长为(x +1)米.依题意,得32+x 2=(x +1)2,解得x =4,故竿长为5米。
.6.因为︒=∠90B ,所以ABC ∆为直角三角形.又因为AB=4cm ,BC=3cm ,所以ABC ∆的面积为)(64321212cm BC AB =⨯⨯=∙. 根据勾股定理,得)(5342222cm BC AB AC =+=+=. 此时1691252222=+=+CD AC ,1691322==AD ,即222AD CD AC =+. 根据勾股定理逆定理知ACD ∆是直角三角形,且︒=∠90ACD .ACD ∆的面积为)(3012521212cm CD AC =⨯⨯=∙. 所以四边形ABCD 的面积是)(363062cm =+。