第二讲多因素正交实验设计
- 格式:pptx
- 大小:502.47 KB
- 文档页数:27
第三节_多因素正交实验设计第三节多因素正交实验设计引言, 多因素实验存在的矛盾1. 第一是全面实验的次数与实际可行的实验次数之间的矛盾;2. 第二是实际所做的少数实验与全面掌握内在规律的要求之间的矛盾。
, 正交实验设计, 正交实验设计,能帮助我们在实验前借助于事先已制好的正交表科学地设计实验方案,从而挑选出少量具有代表性的实验做,实验后经过简单的表格运算,分清各因素在实验中的主次作用并找出最好的运行方案,最终得到正确的分析结果。
一、正交实验设计的基本原理 (一)正交表1、定义:正交表,是依据数学原理,从大量的全面试验点中,为挑选少量具有代表性的试验点,所制成的排列整齐的规范化表格。
三因素二水平正交表2、正交表符号的含义7常用正交表 L(2) 84常用正交表 L(3) 93、正交表的特点1. 每一列中,不同数字(如:1或2)出现的次数相等;2. 任意两列中,将同一横行的两个数字看成有序数对(如:数对(1,1)、 (1,2) (2,1) 等)时,每种数对出现的次数相等(二)正交表的类型, 同水平正交表:即各因素水平数相等的表格; , 混合水平正交表:即各因素水平数不相等的表格。
41、同水平正交表L(3) 942、混合水平正交表L(4×2) 8 4混合水平正交表L(4×2) 8 (三)正交性原理, 正交性原理是设计正交表的科学依据,主要表现为均衡搭配性。
, 均衡搭配是指用正交表所安排的试验方案,能均衡的分散在水平搭配的各个组合方案中,因而其试验具有代表性。
回顾例题:, 为了提高某化工产品的转化率,试验者选择了3个有关的因素:反应温度A,反应时间B,用碱量C,并且选择如下的试验范围:A:80~90?;B:90~150min;C:5~7%。
要求确定最佳工艺条件(即转化率达到最高时的反应条件)。
1、分析条件2、实验安排抽象形式实验安排3、三因素二水平全面试验点分布直观图4、三因素二水平正交实验安排三因素二水平正交实验法实验点分布二、正交实验设计的基本方法例题:为了提高某化工产品的转化率,试验者选择了3个有关的因素:反应温度A,反应时间B,用碱量C,并且选择如下的试验范围:A:80~90?;B:90~150min;C:5~7%。
在生产和科研中,为了研制新产品,改革生产工艺,寻找优良的生产条件,需要做许多多因素的试验。
在方差分析中对于一个或两个因素的试验,我们可以对不同因素的所有可能的水平组合做试验,这叫做全面试验。
当因素较多时,虽然理论上仍可采用前面的方法进行全面试验后再做相应的方差分析,但是在实际中有时会遇到试验次数太多的问题。
例如,生产化工产品,需要提高收率(产品的实际产量与理论上投入的最大产量之比),认为反应温度的高低、加碱量的多少、催化剂种类等多种因素,都是造成收率不稳的主要原因。
根据以往经验,选择温度的三个水平:800C、850C、900C;加碱量的三个水平:35、48、55(kg);催化剂的三个水平:甲、乙、丙三种。
如果做全面试验,则需33=27次。
如果有3个因素,每个因素选取4个试验水平的问题,在每一种组合下只进行一次试验,所有不同水平的组合有43=64种,如果6个因素,5个试验水平,全面试验的次数是56=15,625次。
对于这样一些问题,设计全面的试验往往耗时、费力,往往很难做到。
因此,如何设计多因素试验方案,选择合理的试验设计方法,使之既能减少试验次数,又能收到较好的效果。
“正交试验法”就是研究与处理多因素试验的一种科学有效的方法。
正交试验法在西方发达国家已经得到广泛的应用,对促进经济的发展起到了很好的作用。
在我国,正交试验法的理论研究工作已有了很大的进展,在工农业生产中也正在被广泛推广和应用,使这种科学的方法能够为经济发展服务。
正交试验法就是利用排列整齐的表-正交表来对试验进行整体设计、综合比较、统计分析,实现通过少数的试验次数找到较好的生产条件,以达到最高生产工艺效果。
正交表能够在因素变化范围内均衡抽样,使每次试验都具有较强的代表性,由于正交表具备均衡分散的特点,保证了全面试验的某些要求,这些试验往往能够较好或更好的达到试验的目的。
正交试验设计包括两部分内容:第一,是怎样安排试验;第二,是怎样分析试验结果。
正交试验设计多因素交互作用研究正交试验设计是一种常用的多因素试验设计方法,其主要用于研究多个因素对实验结果的影响以及因素之间的交互作用。
本文将介绍正交试验设计的基本概念、步骤以及其在多因素交互作用研究中的应用。
一、正交试验设计的基本概念正交试验设计,也称为正交表设计或正交数组设计,是一种通过有效地组合和安排试验因素,来获取尽可能多的信息和结论的统计设计方法。
与传统的单因素试验设计相比,正交试验设计能够在较少实验次数的情况下,获得更全面和准确的实验数据。
二、正交试验设计的步骤1. 确定试验因素:首先确定需要研究的试验因素和水平。
试验因素是影响实验结果的各个变量,而水平则是每个变量的具体取值。
2. 构建正交表:根据试验因素的数量和水平,选择适当的正交表。
正交表是一种特殊的矩阵,用于确定试验条件的组合。
3. 规划试验方案:根据正交表,确定每个试验条件的组合和重复次数。
试验条件的组合是试验因素水平的排列组合,而重复次数则是每个条件的重复实验次数。
4. 进行试验:按照试验方案进行实验,并记录实验结果。
5. 进行数据分析:使用合适的统计方法对实验数据进行分析,以获取对试验因素及其交互作用的准确评估。
6. 得出结论:根据数据分析结果,得出试验因素及其交互作用的结论,并进行解释和推断。
三、正交试验设计在多因素交互作用研究中的应用正交试验设计在多因素交互作用研究中具有广泛的应用。
通过正交试验设计,可以系统地研究多个因素之间的相互影响及其对实验结果的综合影响。
以某电子产品的设计为例,假设需要研究三个因素对电池续航时间的影响:A因素为屏幕亮度,有三个水平;B因素为手机信号强度,有三个水平;C因素为使用时间,有三个水平。
使用正交试验设计,根据3^3的正交表,可以得到27个试验条件的组合。
对每个试验条件进行一次实验,记录续航时间数据。
通过数据分析,可以得到各因素及其交互作用对电池续航时间的影响程度。
例如,可以得出屏幕亮度对续航时间的影响较大,而使用时间的影响较小。
第二章第四节正交试验设计多因素正交试验设计与方差分析正交试验设计是利用正交表安排试验的一种科学的试验设计方法,它既可减少试验次数,又能进行较全面的比较,达到选取良好试验条件的目的。
一、正交表正交表是一种特殊的表格,记作L表示正交表;n表示正交表的行数,也是试验次数;r表示正交表的列数,也是最多可安排的因素个数;p表示正交表中出现的数码的个数,也是各因素的水平数。
Ln ( p r )<i>试验设计与最优化课件</i>L8 ( 2 7 )列试验号1 2 3 4 5 6 7 8 1 1 1 1 1 2 2 2 2 2 1 1 2 2 1 1 2 2 3 1 1 2 2 2 2 1 1 4 1 2 1 2 1 2 1 2号5 1 2 1 2 2 1 2 1 6 1 2 2 1 1 2 2 1 7 1 2 2 1 2 1 1 2<i>试验设计与最优化课件</i>L9 ( 3 4 )列试验号1 2 3号41 2 3 4 5 6 7 8 91 1 12 2 23 3 31 2 3 1 2 3 1 2 31 2 3 2 3 1 3 1 21 2 3 3 1 2 2 3 1<i>试验设计与最优化课件</i>正交表具有如下两个特点:(1) 表中任一列,不同数字出现的次数相同,表明了正交表的均衡性。
(2) 表中任何两列同一行的两个数字组成的所有可能数对出现的次数都相同。
表明了正交表的正交性。
因为正交表具有以上两种性质,所以,安排的试验具有均匀分散,整齐可比性。
二正交试验设计的步骤(1) 明确试验目的,选定试验指标。
(2)挑选因素和水平。
凭借专业知识和实践经验,选择对指标可能有一定影响的因素及各因素比较合理的水平。
<i>试验设计与最优化课件</i>(3)选用正交表,作表头设计。
首先根据水平的个数选择正交表,并使其列数略多于因素个数。
正交试验设计方法(详细步骤正交试验设计方法是一种经典的实验设计方法,可以高效地确定对多个因素影响的最佳组合。
它通过将因素分为若干水平,并使用正交设计表确定各个因素水平之间的配对,从而减少试验次数,提高试验效率。
下面将详细介绍正交试验设计方法的步骤。
1.确定试验目的和因素:首先需要明确试验的目的,即我们要研究的问题是什么。
然后确定影响结果的各个因素。
通常情况下,正交试验设计方法适用于多因素多水平的情况。
2.确定因素水平和个数:确定每个因素的水平,并确定每个因素的水平数。
水平数的选择应该充分考虑试验的复杂性和实际可行性。
一般来说,水平数应该是2的幂次方。
3.构建正交表:根据因素的水平数,选择对应的正交表。
正交表是一种数学表格,用于确定不同因素水平之间的配对。
目前,有很多不同类型的正交表可供选择,如拉丁方正交表、天堂树正交表等。
4.设计试验方案:根据正交表的设计原则,将每个因素的各个水平按照正交表进行配对,形成完整的试验方案。
每个配对称为一个处理组合,每组处理组合对应一个试验。
5.进行实验:按照设计的试验方案进行实验。
在进行实验时,需要尽量避免实验误差的干扰,采取适当的控制措施。
6.收集数据:进行实验后,需要及时收集数据。
数据采集要准确、全面,保证实验结果的可靠性。
7.数据分析:对收集到的数据进行统计分析。
可以使用方差分析方法进行分析,通过比较不同因素水平对结果的影响程度,确定最佳组合。
8.结果解释和应用:根据数据分析结果,解释各个因素对结果的影响程度,确定最佳组合。
根据结果进行决策,并将最佳组合应用于实际生产或研究中。
需要注意的是,正交试验设计方法虽然可以高效地确定最佳组合,但仍然具有一定的局限性。
试验结果的可靠性和适用性取决于试验设计的合理性和实施的严格性。
因此,在进行正交试验设计时,需要充分考虑实际情况,合理选择因素和水平,并严格控制试验过程,以确保结果的准确性和可靠性。
正交实验设计当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。
因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。
正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3)3正交表按排实验,只需作9次,按L18(3)7正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
1.正交表正交表是一整套规则的设计表格,用。
L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。
例如L9(34),(表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。
一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。
根据正交表的数据结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… S j组成,这些数码均各出现N/S次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现次。
正交表具有以下两项性质:(1)每一列中,不同的数字出现的次数相等。
例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
多因素正交实验设计多因素正交实验设计的基本原理是将多个因素分解为独立的正交组合,通过少量的试验来测试各种不同因素水平的组合。
这种分解使得因素之间的相互作用可以独立地分析和解释,从而更准确地确定主要影响因素。
在实验设计过程中,需要选择影响因素的水平和范围,并确定实验因素的层次结构。
多因素正交实验设计的优点是可以减少实验次数,节省时间和成本。
通过合理的实验设计,可以充分利用有限的资源来获取大量的信息。
同时,由于各个因素的正交分解,可以准确地评估不同因素的影响,进一步优化结果变量。
在进行多因素正交实验设计时,需要注意以下几个关键点:1.因素的选择:需要明确定义实验中需要考虑的因素,并分析其对结果变量的可能影响。
同时,应该选择那些可能存在交互作用的因素,以便进一步分析。
2.水平设置:每个因素都应该有两个或多个水平,以反映不同的影响程度。
水平的设置应该覆盖实际应用中的范围,并确保在试验中可以准确地测量和控制。
3. 实验设计:根据所选因素和水平,采用合适的正交表设计实验。
常用的正交实验设计有Taguchi方法、Box-Behnken设计等。
实验设计应尽可能有效,同时对因素的主要效应和交互作用进行均衡的评估。
4.实验执行:按设计方案执行实验,并准确记录数据。
在实验过程中要保持实验条件的稳定性,确保结果的可靠性。
5.数据分析:使用适当的统计方法对实验数据进行分析。
可以通过方差分析(ANOVA)来评估因素,交互作用和误差之间的显著性差异。
同时,可以应用回归分析和优化方法,建立预测模型并确定最佳的因素水平组合。
总而言之,多因素正交实验设计通过合理的实验设计和数据分析,可以确定主要因素和交互作用,并优化结果变量。
它是一种有效的统计方法,可以减少实验次数并提高研究效率,对于优化产品和流程具有重要的意义。