半导体物理:金属和半导体的接触
- 格式:ppt
- 大小:1.27 MB
- 文档页数:50
半导体物理学第七章知识点第7章⾦属-半导体接触本章讨论与pn 结特性有很多相似之处的⾦-半肖特基势垒接触。
⾦-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之⼀:§7.1⾦属半导体接触及其能级图⼀、⾦属和半导体的功函数1、⾦属的功函数在绝对零度,⾦属中的电⼦填满了费⽶能级E F 以下的所有能级,⽽⾼于E F 的能级则全部是空着的。
在⼀定温度下,只有E F 附近的少数电⼦受到热激发,由低于E F 的能级跃迁到⾼于E F 的能级上去,但仍不能脱离⾦属⽽逸出体外。
要使电⼦从⾦属中逸出,必须由外界给它以⾜够的能量。
所以,⾦属中的电⼦是在⼀个势阱中运动,如图7-1所⽰。
若⽤E 0表⽰真空静⽌电⼦的能量,⾦属的功函数定义为E 0与E F 能量之差,⽤W m 表⽰:FM M E E W -=0它表⽰从⾦属向真空发射⼀个电⼦所需要的最⼩能量。
W M 越⼤,电⼦越不容易离开⾦属。
⾦属的功函数⼀般为⼏个电⼦伏特,其中,铯的最低,为1.93eV ;铂的最⾼,为5.36 eV 。
图7-2给出了表⾯清洁的⾦属的功函数。
图中可见,功函数随着原⼦序数的递增⽽周期性变化。
2、半导体的功函数和⾦属类似,也把E 0与费⽶能级之差称为半导体的功函数,⽤W S 表⽰,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与⾦属不同,半导体中费⽶能级⼀般并不是电⼦的最⾼能量状态。
如图7-3所⽰,⾮简并半导体中电⼦的最⾼能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电⼦亲合能。
它表⽰要使半导体导带底的电⼦逸出体外所需要的最⼩能量。
利⽤电⼦亲合能,半导体的功函数⼜可表⽰为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费⽶能级与导带底的能量差。
图7-1 ⾦属中的电⼦势阱图7-2 ⼀些元素的功函数及其原⼦序数图7-3 半导体功函数和电⼦亲合能表7-1 ⼏种半导体的电⼦亲和能及其不同掺杂浓度下的功函数计算值⼆、有功函数差的⾦属与半导体的接触把⼀块⾦属和⼀块半导体放在同⼀个真空环境之中,⼆者就具有共同的真空静⽌电⼦能级,⼆者的功函数差就是它们的费⽶能级之差,即W M -W S =E FS -E FM 。
第七章 金属和半导体接触引言:金属与半导体接触类型:1、 整流接触:金属与轻掺杂半导体形成的接触表现为单向导电性,即具有整流特性,但电流通常由多子所荷载。
由于这种器件主要靠电子导电,消除了非平衡少子的 存储,因而频率特性优于p –n 结;又由于它是在半导体表面上形成的接触,便于散热,所以可以做成大功率的整流器;在集成电路中用作箝位二极管,可以提高集成电路的速度,通常称为肖特基势垒二极管,简称肖特基二极管。
2、 欧姆接触:这种接触正反向偏压均表现为低阻特性,没有整流作用,故也称为非整流接触。
任何半导体器件最后都要用金属与之接触并由导线引出,因此,获得良好的欧姆接触是十分必要的。
§7.1 金属半导体接触及其能带图本节内容:1、 金属和半导体的功函数2、 接触电势差3、 阻挡层与反阻挡层4、 表面态对接触势垒的影响课程重点:金属的功函数:在绝对零度的电子填满了费米能级F E 以下的所有能级,而高于F E 的能级则全部是空着的。
在一定温度下,只有F E 附近的少数电子受到热激发,由低于F E 的能级跃迁到高于F E 的能级上去,但是绝大部分电子仍不能脱离金属而逸出体外,这说明金属中的电子虽然能在金属中自由运动,但绝大多数所处的能级都低于体外能级。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属内部的电子是在一个势阱中运动。
用0E 表示真空中静止电子的能量,金属功函数的定义是0E 与F E 能量之差,用m W 表示,即m F m E E W )(0-=它表示一个起始能量等于费米能级的电子,由金属内部逸出到真空中所需要的最小能量。
功函数的大小标志着电子在金属中束缚的强弱,m W 越大,电子越不容易离开金属。
半导体的功函数和金属类似:即把真空电子静止能量0E 与半导体费米能级S F E )(之差定义为半导体的函数,即s F s E E W )(0-=。
因为半导体的费米能级随杂质浓度变化,所以半导体的功函数也与杂质浓度有关。
第七章 半导体的接触现象半导体的接触现象主要有半导体与金属之间的接触(肖特基结和欧姆接触)、半导体与半导体之间的接触(同质结和异质结)以及半导体与介质材料之间的接触。
这一章主要介绍前两种接触现象。
§7-1 外电场中的半导体无外加电场时,均匀掺杂半导体中的空间电荷处处等于零。
当施加外电场时,在半导体中引起载流子的重新分布,从而产生密度为)(r ρ的空间电荷和强度为)(r ∈的电场。
载流子的重新分布只发生在半导体的表面层附近,空间电荷将对外电场起屏蔽作用。
图7-1a 表示对n 型半导体施加外电场时的电路图。
在图中所示情况下,半导体表面层的电子密度增大而空穴密度减小(见图7-1b 、c ),从而产生负空间电荷。
这些空间电荷随着离开样品表面的距离的增加而减少。
空间电荷形成空间电场s ∈,在半导体表面s ∈达到最大值0s ∈(见图7-1d )。
空间电场的存在将改变表面层电子的电势和势能(见图7-1e 、f ),从而改变样品表面层的能带状况(见图7-1g )。
电子势能的变化量为)()(r eV r U -=,其中)(r V 是空间电场(也称表面层电场)的静电势。
此时样品的能带变化为)()(r U E r E c c += (7-1a ))(r E v =)(r U E v + (7-1b )本征费米能级变化为 )()(r U E r E i i += (7-2a )杂质能级变化为 )()(r U E r E d d += (7-2b )由于半导体处于热平衡状态,费米能级处处相等。
因此费米能级与能带之间的距离在表面层附近发生变化。
无外电场时这个距离为(f c E E -)和(v f E E -) (7-3)而外场存在时则为[]f c E r U E -+)( 和-f E [)(r U E v +] (7-4)比较(7-3)和(7-4)式则知,如果E c 和E f 之间的距离减少)(r U ,E f 与E v 之间的距离则增加)(r U 。
第七章金属和半导体的接触1. 基本概念1)什么是金属的功函数?答:金属费米能级的电子逸出到真空中所需要的能量,即()m F m E E W −=0。
其中E 0:真空中电子的静止能量,(E F )m :金属的费米能。
随着原子序数的递增,金属的功函数呈周期性变化。
2)什么是半导体的电子亲和能?答:半导体导带底的电子逸出到真空中所需要的能量,即C 0E E −=χ。
其中E 0:真空中电子的静止能量,E C :半导体导带底的能量。
3)以金属-n 型半导体接触为例,如果金属的功函数大于半导体的功函数,即W m >W s ,则半导体表面的空间电荷、电场和表面势垒具有什么特点?如果W m >W s ,又如何呢?答:金属-n 型半导体接触,如果W m >W s ,电子从半导体流向金属。
半导体表面形成正的空间电荷区,电场方向由体内指向表面,形成表面势垒。
在势垒区,空间电荷主要由电离施主形成,电子浓度比体内低很多,为高阻区域,称为阻挡层。
如果W m <W s ,电子从金属流向半导体,势垒区电子浓度比体内大很多,为高电导区,称为反阻挡层。
4)什么是表面态对势垒的钉扎?答:表面态密度存在时,即使不与金属接触,表面也会形成势垒。
高的表面态密度,可以屏蔽金属接触的影响,使半导体势垒高度几乎与金属的功函数无关,即势垒高度被高的表面态密度钉扎(pinned )5)为什么金属-n 型半导体接触器件具有整流作用?答:外加电压V ,如果使金属的电势升高,由于n 型半导体高阻挡层为高阻区,外压V 将主要降落在阻挡层,则势垒下降,电阻下降。
反之,如果金属的电势下降,则势垒增高,势垒区电子减少(多子),电阻更高。
因此阻挡层具有类似于pn 结的整流作用。
6)以金属-n 型半导体接触为例,写出势垒宽度大于电子的平均自由程时,其扩散电流密度与电压的关系。
与pn 结的电流密度-电压关系比较,各自具有什么相同和不同的特点?答:金属-n 型半导体接触,扩散电流为⎟⎟⎠⎞⎜⎜⎝⎛−=1kT qV sD e J J ,()T k qVr D D sD D e V V qN J 02/102−⎭⎬⎫⎩⎨⎧−=εεσ 与pn 结的电流密度-电压关系比较,二者均具有单向性的特征;所不同的是,金属-n 型半导体接触的反向电流随外加电压增加呈1/2次方增加,而pn 结的反向电流不随电压变化。