联合循环简介
- 格式:ppt
- 大小:5.00 MB
- 文档页数:69
联合循环发电原理
联合循环发电原理是一种利用多种能源进行发电的方法。
它结合了传统的热力发电与新能源发电技术,通过多个循环系统的协同作用,提高了能源利用效率和环保性能。
联合循环发电的原理是将火力发电、燃气发电和太阳能发电等多种能源进行有机结合,使它们互补、补充,并协同作用,形成一个完整的能源生态系统。
在联合循环发电中,热力发电和燃气发电作为主要的发电方式,通过热力循环和燃气循环实现能源利用的最大化。
同时,太阳能发电作为一种新兴的清洁能源,通过光伏电池板吸收太阳能,将其转化为电能,为循环系统提供补充。
联合循环发电的优点在于能够减少化石能源的使用量,降低能源消耗对环境的危害,同时提高发电效率和供电可靠性。
未来,联合循环发电将成为可持续发展的重要手段之一,为人类创造更加清洁、高效、可持续的生活方式。
- 1 -。
联合循环燃气轮机发电厂简介集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-联合循环燃气轮机发电厂简介联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。
形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。
胜利油田埕岛电厂采用的是美国GE公司的MS9001E燃气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。
1.燃气轮机1.1简介燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。
主要结构有三部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机);3、燃烧室。
其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。
生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。
燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。
主要用于发电、交通和工业动力。
燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。
重型燃气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。
埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000转/分,直接传动的发电机。
该型燃气轮发电机组最早于1987年投入商业运行,基本负荷燃用天然气时的功率为123.4MW,热效率为33.79%,排气温度539℃,排气量1476×103公斤/小时,压比为12.3,燃气初温为1124℃,机组为全自动化及遥控,从启动到满载正常时间为约20分钟,机组使用MARKⅤ控制和保护系统.MS9001E型机组为户外快装机组,因此不需要专用的厂房建筑,而是用多块吸声板构成的长方形箱体,机组即放置在其内,箱体既起隔声作用,又能代替厂房使机组在各种气候条件下都能正常工作,每台机组连同发电机及控制室等均分别放置在长方体状的箱体内,在其周围还有空气进气系统,燃料供应单元和机组的冲洗装置等附属设备,组成整套燃气轮机动力装置。
联合循环用燃气轮机的发展联合循环发电是一种将燃气轮机与蒸汽轮机结合在一起的发电方式。
其原理是将燃气轮机排出的废热通过热交换器加热冷却水,使其变成蒸汽,再通过蒸汽轮机发电。
联合循环利用了燃气轮机高效排出的废热,提高了发电效率,降低了燃料消耗,减少了对环境的影响。
联合循环用燃气轮机的发展可以追溯到20世纪60年代,当时燃气轮机开始应用于舰船和我们的发展,但是由于技术限制,联合循环的效率并不高。
然而,随着技术的不断革新和发展,联合循环用燃气轮机的效率得到了显著提高,成为一种广泛应用的发电方式。
首先,燃气轮机的技术不断进步,使其具有更高的效率和更低的排放。
燃气轮机作为燃烧式发电机,其排放比传统的蒸汽轮机更低,因为其燃烧过程中没有涉及锅炉等设备。
随着燃气轮机燃烧技术的改进,其排放量减少了很多,同时效率也得到了显著提高。
其次,热交换技术的发展使得废热的利用更加高效。
热交换器可以将燃气轮机排出的高温废气通过换热原理将冷却水加热,从而产生高温高压的蒸汽。
而传统的蒸汽轮机只能利用煤炭等固体燃料燃烧产生的废热。
热交换技术的发展使得联合循环的效率得到了显著提高。
再次,燃料的多元化也推动了联合循环用燃气轮机的发展。
传统的燃气轮机使用天然气作为燃料,而随着生物质能源、液化石油气等新型燃料的发展,联合循环用燃气轮机也可以利用这些燃料进行发电。
这不仅提高了燃料的利用率,还减少了对天然气等传统资源的依赖。
最后,环保意识的增强也推动了联合循环用燃气轮机的发展。
联合循环发电方式减少了对环境的影响,特别是通过排放控制和废气治理,可以使燃气轮机排出的废气达到环保标准。
随着人们对环境保护意识的增强,联合循环用燃气轮机逐渐成为一种受欢迎的发电方式。
总之,联合循环用燃气轮机的发展得益于燃气轮机技术的进步、热交换技术的发展、燃料多元化以及环保意识的增强。
随着科技的不断发展和创新,相信联合循环用燃气轮机将在未来得到更广泛的应用,为我们提供更高效、更环保的电力。
燃气轮机联合循环介绍燃气轮机联合循环,听起来高大上,其实它就是个把“高温气体”变成“电”的小能手。
想象一下,你家的锅炉,这家伙可不是随便烧水的,它可是经过精心设计,把燃料的能量最大化利用,简直就像做一道精致的菜,分分钟把每一滴油都榨干了。
说到燃气轮机,它工作的时候就像是个狂欢派对,燃气在里面像小精灵一样舞动,经过燃烧后产生的高温高压气体,通过涡轮转动,啧啧,那声音,简直能把你震撼得心潮澎湃。
接下来咱们得聊聊这个联合循环。
其实嘛,就是把燃气轮机和蒸汽轮机组合在一起,形成一个完美的搭档。
你可别小看这对组合,简直就像是李白和杜甫,实力强大。
燃气轮机先来,把热能转化为机械能,然后蒸汽轮机再上场,利用余热发电,真的是一波三折,电力输出可谓是节节攀升,简直不容小觑。
想象一下,余热就像那烧到最后的炭火,虽然看似无用,实际却能把能量发挥到极致。
要知道,联合循环的效率可不是盖的,通常能达到60%左右,这在电厂界可是个“牛”气冲天的数字。
和传统发电方式比起来,这可是真正的节能环保先锋!燃气轮机虽然看上去光鲜亮丽,但其实它也有点“小脾气”,对燃料质量要求比较高,像是挑食的小孩子,一定要确保燃料纯净,才能发挥出最佳状态。
不过,一旦它“吃得好”,那真是“能量满满”,让你震惊的电量输出真是让人目瞪口呆。
联合循环不仅仅是在电厂发电,它在航天和船舶等领域也是不可或缺的。
想象一下,那些航天器在太空中飞行,动力来源也是这套系统,真是太酷了!更有趣的是,燃气轮机的设计和运行也在不断进步,许多科技公司为了追求更高的效率和更低的排放,像拼图一样,把各种新材料和技术应用进去,让燃气轮机像是升级版的“超级战士”。
哎,说到环保,这也是联合循环的一大亮点。
它在发电过程中,二氧化碳的排放量相对较少,基本上就是在为地球“减负”。
想象一下,随着气候变化问题日益严重,联合循环的存在简直像一缕清风,给环保事业带来了新的希望。
每当听到绿色电力的概念,心里总会油然而生一丝自豪感,觉得自己也为保护地球出了一份力。
f级联合循环效率
摘要:
一、引言
二、F级联合循环的定义和原理
三、F级联合循环的优点
四、F级联合循环的发展现状和前景
五、结论
正文:
一、引言
随着能源问题的日益严重,人们对高效、清洁的能源需求越来越大。
在这样的背景下,F级联合循环作为一种高效、环保的发电技术,受到了广泛关注。
本文将介绍F级联合循环的定义、原理、优点以及发展现状和前景。
二、F级联合循环的定义和原理
F级联合循环是一种燃气轮机发电技术,它采用两个独立的燃气轮机,一个为高压燃气轮机,另一个为低压燃气轮机。
高压燃气轮机产生的高温高压气体进入低压燃气轮机,在低压燃气轮机中释放能量,再次产生动力。
这种循环方式提高了整体系统的发电效率,降低了燃料消耗。
三、F级联合循环的优点
1.高效:F级联合循环的发电效率远高于传统的热电厂,可达到60%左右,大大降低了燃料消耗。
2.环保:由于F级联合循环采用燃气轮机,其排放的污染物远低于燃煤电
厂,有利于改善环境质量。
3.灵活:F级联合循环可以根据电力需求进行快速启停,满足电网对调峰电源的需求。
4.经济:F级联合循环的建设成本相对较低,且运行维护费用较低,具有较好的经济性。
四、F级联合循环的发展现状和前景
目前,F级联合循环在我国已得到广泛应用,尤其在天然气资源丰富地区。
随着技术的不断进步,F级联合循环在未来将会更加成熟,成为我国能源领域的重要支柱。
同时,随着全球对清洁能源的需求增长,F级联合循环在国际市场上也将具有广阔的发展空间。
五、结论
F级联合循环作为一种高效、清洁的发电技术,具有广泛的应用前景。
联合循环发电技术联合循环发电技术(CCPP)是由燃气轮机发电和蒸汽轮机发电叠加组合起来的联合循环发电装置,与传统的蒸汽发电系统相比,具有发电效率高、成本低、效益好,符合调节范围宽,安全性能好、可靠性高,更加环保等等一系列优势。
联合循环由于做到了能量的梯级利用从而得到了更高的能源利用率,已以无可怀疑的优势在世界上快速发展。
目前发达国家每年新增的联合循环总装机容量约占火电新增容量的40%~50%,所有世界生产发电设备的大公司至今(如美国的GE公司87年开始)年生产的发电设备总容量中联合循环都占50%以上。
最高的联合循环电站效率(烧天然气)已达55.4%,远远高于常规电站,一些国家(如日本等)已明确规定新建发电厂必须使用联合循环。
由于整体煤气化联合循环发电机组(IGCC)是燃煤发电技术中效率最高最洁净的技术,工业发达国家都十分重视,现在世界上已建成或在建拟建IGCC电站近20座,一些已进入商业运行阶段。
燃气轮发电机组在我国近几年才有较大发展,目前装机占火电总容量的 3.5%,大部分由国外购进,国产机组只占9.4%,且机组容量小、初温低,机组水平只处于国外80年代水平,且关键部件仍有外商提供,远不能满足大容量、高效率的联和循环机组的需要。
燃气轮机是联合循环包括燃煤联合循环的最关键技术,我公司虽然以前也曾设计制造过燃气轮机,但功率小、,初温低,且某些关键技术如冷却技术、跨音速压气机等项目尚处于研究开发阶段。
有一些公司对燃气轮机的研制始于1960年前后,在船用、机车用、发电用等几条线上同时进行。
作为技术水平综合标志的综合技术能力即设计能力是:到七十年代中后期,基本能按自己的科研成果独立设计高原铁路使用的燃气轮机(7000马力);能按测绘资料设计长输气管线用的燃气轮机(17600kw);具有品种较全但规模较小检测设备较初级的实验台,进行了相当多的试验,取得了可观的成果。
经过不小于十余种型号的整机的自行设计、试验、生产和运行的全过程不但掌握了技术而且培养了一批人。
整体煤气化联合循环发电整体煤气化联合循环(IGCC-Integrated Gas ification Combined Cycle)发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。
它由两大部分组成,即煤的气化与净化部分和燃气-蒸汽联合循环发电部分。
第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置),第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。
IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气轮机作功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机作功。
其原理图见下图IGCC技术把高效的燃气-蒸汽联合循环发电系统与洁净的煤气化技术结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。
在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高。
而污染物的排放量仅为常规燃煤电站的1/10,脱硫效率可达99%,二氧化硫排放在25mg/Nm3左右。
(目前国家二氧化硫为1200mg/Nm3),氮氧化物排放只有常规电站的15%--20%,耗水只有常规电站的1/2-1/3,利于环境保护。
IGCC具有以下一些突出优点:(1)发电效率高,目前可达45%,继续提高的潜力大。
(2)与传统的燃煤方式不同。
它能实现98%以上的污染物脱除效率,并可回收高纯度的硫、粉尘和其他污染物在此过程中一并被脱除。
(3)用水量小,约为同等容量常规火电机组的三分之一至二分之一。
(4)通过采用低成本的燃烧前碳捕捉技术可实现零碳排放。
(5)能与其他先进的发电技术如燃料电池等结合,并能形成制氢、化工等多联产系统。
气化炉、燃气轮机、空气分离装置和余热锅炉是IGCC关键设备。
气化炉方面,我们认为壳牌气化炉具有产气热值高、煤种适应性广、停机维护时间短等特点,将成为未来IGCC将推广的重要炉型。
工程热力学喷气发动机联合循环的工作原理及特点喷气发动机是一种常见的动力装置,广泛应用于航空、航天和工业领域。
为了提高发动机的热效率和功率输出,工程热力学中提出了喷气发动机联合循环的概念。
本文将详细介绍喷气发动机联合循环的工作原理以及其特点。
一、工作原理1. 简介喷气发动机联合循环是一种将燃烧室废气与蒸汽动力循环相结合的系统。
在传统的喷气发动机中,大量废气含有高温高能量,而这些废气通常会被直接排放。
而联合循环则利用这些废气,通过燃烧室后的烟气余热来产生蒸汽,再将蒸汽作为额外的工作物质来驱动涡轮,从而提高热效率。
2. 工作流程联合循环的工作流程包括废气余热回收、蒸汽发生、蒸汽冷凝和蒸汽动力循环四个主要步骤。
废气余热回收:燃烧室内产生的高温废气通过换热器进行余热回收,将烟气温度降低至合适的蒸汽发生温度。
蒸汽发生:降温后的废气进入蒸汽发生器,与水进行热交换,使水变为高温高压蒸汽。
蒸汽冷凝:蒸汽通过涡轮推动发电机或其他设备工作,然后进入冷凝器,在冷凝器中与冷却介质进行热交换,变为液体。
蒸汽动力循环:冷凝后的液体被泵送至蒸汽发生器,再次参与蒸汽循环。
二、特点1. 提高热效率联合循环通过废气余热回收和额外的蒸汽动力循环,使废气中的热能得到充分利用,提高了整个系统的热效率。
相较于传统的喷气发动机,联合循环的热效率可提高5-10个百分点。
2. 减少排放联合循环可以减少废气排放,降低对环境的负荷。
废气中的热能被充分回收利用,减少了烟气的温度和排放量,降低了对大气的污染。
3. 提升动力输出利用额外的蒸汽动力循环,喷气发动机的动力输出可以得到进一步提升。
蒸汽的加入增加了额外的工作物质,提高了整个系统的功率。
4. 延长发动机寿命联合循环利用蒸汽冷凝产生的液体作为润滑剂,可在一定程度上减少机件的磨损和热蚀,延长发动机的使用寿命。
5. 多能源适应性联合循环不仅可以利用传统的燃油发生热再利用,还能与其他能源相结合,如天然气、生物质和核能等,具有较强的多能源适应性。