医学遗传学笔记(重点标注)
- 格式:pdf
- 大小:3.64 MB
- 文档页数:35
绪论(重点:遗传病定义及特征)1.遗传病:一般把遗传因素作为唯一或主要病因的疾病成为遗传病2.医学遗传学:用人类遗传学的理论和方法来研究遗传病从亲代传递至子代的特点,规律、起源和发生、病理机制、病变过程及其与临床关系的一门综合学科。
3.简要说明遗传病的特征?答:①遗传病的传播方式:一般是以垂直方式出现的,不延伸至无亲缘个体②遗传病的数量分布:亲祖代和子孙代是以一定数量比例出现的,社会上总体数量少,分布不均③遗传病的先天性:但并非所有的遗传病都是先天的④遗传病的家族性:发生具有家族聚集性,发病年龄通常一代比一代早,病情加重⑤遗传病的传染性:一般无传染性,但人类阮粒蛋白是一种遗传又具有传染性的疾病。
第一章人类基因和基因组(重点:断裂基因及其英文)1.割裂基因((split gene)是真核生物的结构基因,由编码序列和非编码序列组成,二者相间排列。
第二章基因突变重点(基因突变,DNA的修复系统有哪些)1.基因突变:发生在分子水平上DNA碱基对组成与序列的变化。
2. DNA的修复系统有哪些?(1)紫外线照射引起的DNA损伤与修复①光复活修复,在可见光的作用下,光复活酶被激活,能够特异性的识别、结合嘧啶二聚体,形成酶-DNA复合体,利用可见光的能量,嘧啶二聚体解聚,修复完成,酶也从DNA上解离,释放。
②切除修复,也称暗修复,无需光能。
发生在DNA复制之前。
③重组修复,发生在DNA复制过程之中和复制完成之后的一种不完全的修复形式。
(2)电离辐射引起的DNA损伤和修复①超快修复②快修复③慢修复第四章单基因病的遗传重点:判断遗传方式,并且加上特点;不规则显性遗传;遗传印记1.遗传方式的特点(1)常染色体显性遗传特点:①男女患病机会均等②患者双亲必有一个是患者③患者的子代有1/2的发病可能。
④连续传递(2)常染色体隐形遗传特点:①男女患病机会均等患者双亲往往表型正常,但都是致病基因的携带者。
②患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3是携带者,患者的子女一般不发病,但肯定都是携带者。
第1篇第一节:引言医学遗传学是一门研究遗传因素在疾病发生、发展和治疗中作用的学科。
它涉及遗传信息的传递、基因变异、遗传疾病的发生机制以及遗传咨询等方面。
以下是对医学遗传学章节的笔记摘抄。
一、遗传的基本概念1. 遗传物质:DNA是遗传信息的载体,存在于细胞核中。
2. 基因:基因是DNA上的功能单位,控制着生物体的性状。
3. 染色体:染色体是DNA和蛋白质的复合体,负责携带遗传信息。
4. 遗传方式:遗传方式包括显性遗传、隐性遗传和共显性遗传。
5. 遗传平衡定律:在自然人群中,基因频率和基因型频率保持稳定。
二、基因突变1. 基因突变:基因突变是指基因序列的改变,可能导致蛋白质结构和功能的改变。
2. 突变类型:点突变、插入突变、缺失突变等。
3. 突变原因:物理因素(如辐射)、化学因素(如致癌物质)、生物因素(如病毒)等。
4. 突变后果:突变可能导致蛋白质功能丧失、功能增强或无影响。
三、遗传疾病1. 遗传疾病:由遗传因素引起的疾病,可分为单基因遗传病、多基因遗传病和染色体病。
2. 单基因遗传病:由一对等位基因突变引起的疾病,如囊性纤维化、血红蛋白病等。
3. 多基因遗传病:由多个基因和环境因素共同作用引起的疾病,如高血压、糖尿病等。
4. 染色体病:由染色体数目或结构异常引起的疾病,如唐氏综合征、染色体缺失等。
四、遗传咨询1. 遗传咨询:为遗传病患者及其家属提供专业的遗传信息和建议。
2. 咨询内容:病因分析、遗传方式、复发风险、产前诊断、基因检测等。
3. 咨询方法:面对面咨询、电话咨询、网络咨询等。
五、基因诊断1. 基因诊断:通过检测基因突变,确定疾病的原因。
2. 诊断方法:DNA测序、基因芯片、PCR扩增等。
3. 基因诊断的应用:遗传疾病的诊断、遗传咨询、产前诊断等。
六、基因治疗1. 基因治疗:通过修复或替换异常基因,治疗遗传疾病。
2. 治疗策略:基因修复、基因替换、基因敲除等。
3. 基因治疗的应用:血友病、囊性纤维化、地中海贫血等。
医学遗传学重点知识总结
1. 基本概念
- 遗传学:研究基因传承和基因变异的科学
- 基因:携带遗传信息的DNA序列
- 染色体:细胞核中包含基因的结构
- 基因型:个体的遗传信息
- 表型:个体的可观察特征
- 突变:基因发生的改变
- 遗传变异:基因型和表型在群体中的差异
2. 遗传物质
- DNA:携带遗传信息的分子
- RNA:参与基因表达的分子
- 蛋白质:由基因表达产生的功能分子
3. 遗传模式
- 常染色体显性遗传:由位于常染色体上的显性基因引起的遗传疾病
- 常染色体隐性遗传:由位于常染色体上的隐性基因引起的遗传疾病
- X连锁遗传:由位于X染色体上的基因引起的遗传疾病,男性更容易患病
- Y连锁遗传:由位于Y染色体上的基因引起的遗传疾病,男性特有
4. 遗传疾病
- 单基因遗传疾病:由单个基因突变引起的疾病,如先天性心脏病、血友病等
- 多基因遗传疾病:由多个基因突变和环境因素共同作用引起的疾病,如糖尿病、高血压等
- 染色体异常疾病:由染色体结构或数量异常引起的疾病,如唐氏综合征、爱德华氏综合征等
5. 基因组学
- 基因组:一个个体的全部基因
- 基因组测序:对个体基因组的全部DNA序列进行测定和分析- 基因组变异:个体基因组中的DNA序列差异
6. 人类遗传学
- 人类基因组计划:对人类基因组进行测序和研究的国际合作项目
- 单核苷酸多态性:个体基因组中单个碱基的变异,如SNP
- 遗传咨询:通过遗传学知识为个体提供遗传疾病的评估和咨询
以上是医学遗传学的一些重点知识总结,仅供参考。
如有任何疑问,建议咨询专业遗传学医生或相关专家。
遗传学(笔记)1-10遗传学课件第一章绪论第一节遗传学的定义、研究内容和任务一、什么是遗传学1、遗传学(Genetics)是研究生物遗传与变异规律的一门科学2、遗传(heredity)是指生物的繁殖过程中,亲代和子代各个方面的相似现象。
3、变异(variation)是指子代个体发生了改变,在某些方面不同于原来的亲代。
4、遗传与变异的辨证关系5、现代的观点:遗传学是研究生物体遗传信息的组成、传递和表达规律的一门科学,其主题是研究基因的结构和功能以及两者之间的关系,所以遗传学可称为基因学。
二、遗传学研究的任务:就是研究生物的遗传变异现象,深入探讨它们的本质,并利用所得成果,能动地改造生物,更好地为人类服务。
三、遗传学研究的内容1、遗传物质的结构2、遗传物质的传递3、遗传物质的表达◆基因在世代之间传递的方式与规律1、孟德尔遗传规律2、摩尔根连锁交换定律3、染色体外遗传(extrachromosomal inheritance):细胞质基因和其他核外基因的非孟德尔传递方式。
4、母性影响(maternal effect):由母体基因型决定子代性状,但受胞质因子影响,F3代才分离的一种单亲遗传方式。
5、群体遗传的Hardy-Winberg 定律与进化◆遗传学基本概念Key Terms1、遗传(heredity, inheritance):生物在以有性或无性生殖方式进行种族繁衍的过程中,子代与亲代相似的现象2、变异(variation)生物个体之间差异的现象3、遗传学(Genetics)◇经典定义∶研究生物遗传和变异规律的一门科学◇现代定义∶研究基因的结构功能、传递和表达规律的一门科学——基因学◇基因(gene)是遗传、发育和进化的交汇点。
◆常用的重要遗传学研究材料1、大肠杆菌(Escherichia coli)2、酿酒酵母(Saccharomyces cerevisiae)3、豌豆(Pisum sativum)4、果蝇(Drosophila)5、玉米(Zea mays)6、小鼠(Mus musculus)7、人(Homo sapiens)8、线虫(Caenorhabditis elegant)9、拟南芥(Arabidopisis)第二节遗传学发展的里程碑一、遗传学的产生1、亚里士多德(Aristotle)2、“先成论”(theory of performation)3、渐成论(theory of epigenesis)4、拉马克(mark,1744-1829)5、达尔文(C.K.Darwin,1809-1882)6、魏斯曼(A. Weismann,1834~1914)7、孟德尔(G.J.Mendel 1822~1884)8、荷兰的德弗里斯(Hugo De Vries),德国的科伦斯(KarlCorrens)奥地利的切尔马克(Erich.S.Tsehermark)二、遗传学的发展1、萨顿(W.S.Sutton,1876~1916)2、贝特逊(W.Bateson,英国遗传学家)3、约翰逊(W.L.Johannson,1857~1927)4、摩尔根(T.H.Morgan ,1866~1945)美国实验胚胎学家5、比德尔(G.W.Beadle 美)和他的老师泰特姆(E.L.Tatum)6、埃弗里(O.T.Arery 美)等。
《医学遗传学》背诵重点第一章绪论【名词解释】1、遗传性疾病(genetic disease):简称遗传病,是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。
2、先天性疾病:是指个体出生后即表现出来的疾病。
大多数是遗传病与遗传因素有关的疾病和畸形。
3、家族性疾病:是指某些表现出家族性聚集现象的疾病,即在一个家族中有多人同患一种疾病。
【简答题】遗传病的特征及分类(1)特征:①垂直遗传②基因突变或染色体畸变是遗传病发生的根本原因,也是遗传病不同于其他疾病的主要特征。
③生殖细胞或受精卵发生的遗传物质改变才能遗传,而体细胞中遗传物质的改变,并不能向后代传递。
④遗传病常有家族性聚集现象。
(2)分类:(一)单基因病:由染色体上某一等位基因发生突变所导致的疾病。
①常染色体显性遗传病②常染色体隐性遗传病③X连锁隐性遗传病④X连锁显性遗传病⑤Y连锁遗传病⑥线粒体遗传病(二)多基因病:由两对以上的等位基因和环境因素共同作用所致的疾病。
(三)染色体病:染色体数目或结构改变所致的疾病。
(四)体细胞遗传病:体细胞中遗传物质改变所致的疾病。
第二章基因【名词解释】1、基因(gene):是合成一种有功能的多肽链或者RNA分子所必需的一段完整的DNA序列。
2、断裂基因(split gene):真核生物结构基因包括编码序列和非编码序列两部分,编码顺序在DNA分子中是不连续的,被非编码顺序分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因。
3、基因突变(gene mutation):是DNA分子中核苷酸序列发生改变,导致遗传密码编码信息改变,造成基因的表达产物蛋白质的氨基酸变化,从而引起表型的改变。
4、外显子(exon):编码顺序称为外显子5、内含子(intron):非编码顺序称为内含子6、多基因家族(mumlti gene family):指某一共同祖先基因经过重复和变异所产生的一组基因。
来源相同、结构相似、功能相关。
7、假基因(pseudo gene):基因序列与具有编码功能的类α和类β珠蛋白基因序列类似,因为不能编码蛋白质,所以称为假基因。
第三章基因突变遗传物质的改变称为突变。
基因突变是指基因内部核苷酸的改变,包括碱基对的置换、插入或缺失。
3.1 基因突变产生的原因根据基因突变发生的原因,可将突变分为自发突变和诱发突变。
自发突变:在自然条件下,未经人工处理而发生的突变。
诱发突变:经人工处理而发生的突变。
基因突变的一般特性:生殖细胞突变:有利或者中性突变:同种生物遗传性状多样性的根源、不同物种演化提供丰富的原材料、促进生物物种系统发育与不同种群产生、形成的原动力有害突变:导致遗传病、构成和增加遗传负荷体细胞突变(somatic mutation)诱变因素:一、物理因素:1.紫外线:紫外线的照射可使DNA顺序中相邻的嘧啶类碱基结合成嘧啶二聚体,最常见的为胸腺嘧啶二聚体(TT)。
2.电离辐射:X-射线、γ射线、中子射线、Co60等,击中DNA链,能量被DNA吸收,导致DNA链和染色体的断裂,片段发生重排。
二、化学因素:1、羟胺(HA):羟胺可使胞嘧啶C的化学成分发生改变,而不能正常地与G配对,改为与A互补,经两次复制后,C-G就变成了T-A。
2、亚硝酸或含亚硝基化合物:这类物质可以使碱基脱去氨基(—NH2),而产生结构改变,如A被脱去氨基后就变成了次黄嘌呤(H)不再与A配对变为与C配。
3、碱基类似物:如5—溴尿嘧啶(5—BU)、2—氨基嘌呤(2—AP)等,可取代碱基而插入,引起DNA分子突变。
5—BU的化学结构与T很相似,它既可与A配对,也可与G配对。
4、烷化剂:甲醛、氯乙烯、氮芥等是具有高度诱变活性的烷化剂,可将烷基(CH3-、C2H5-等)引入多核苷酸链上的任何位置,被烷基化的核苷酸将产生错误配对而引起突变,如烷化G可与T配对,形成G—C→A—T的转换。
5、芳香族化合物:吖啶类和焦宁类等扁平分子构型的芳香族化合物可以嵌入DNA的核苷酸序列中,导致碱基插入或丢失的移码突变。
三、生物因素:病毒:风疹、麻疹、流感、疱疹等真菌和细菌:毒素或代谢产物黄曲霉素3.2基因突变的类型⏹一般分为两大类-静态突变和动态突变。
医学遗传学第一章绪论本章节重点:遗传病的概念、遗传病的类型一、医学遗传学的定义1、医学遗传学(medical genetics):是遗传学与医学相结合的一门学科,研究对象是与人类遗传有关的疾病,即遗传病(genetic disease)。
2、研究内容:遗传病的发生机理(Etiology)、传递方式(Passage)、诊断(Diagnosis)、治疗(Therapy)、预后(Prognosis)、再发风险(Recurrence)、预防方法(Preventive medicine),从而控制遗传病在一个家庭中的再发,降低在人群中的危害,增进人类的健康水平。
3、什么是遗传?Genetics is the study of genes, heredity, and variation in living organisms.二、遗传病的定义1、关于遗传病的一些误解:家族性疾病(familial disease)就是遗传病、先天性疾病(congenital disease)就是遗传病2、遗传病(genetic disease):遗传物质改变所导致的疾病。
包括单基因病、多基因病、染色体病、体细胞遗传病。
三、遗传病的类型1、单基因病(single gene disorder):如果一种遗传病的发病仅仅涉及一对基因,这个基因称为主基因(major gene),其导致的疾病称为单基因病。
常染色体显性(AD)遗传病、常染色体隐性(AR)遗传病、X 连锁显性(XD)遗传病、X连锁隐性(XR)遗传病、Y连锁遗传病、线粒体病2、多基因病(polygenic disease):一些常见的疾病或畸形有复杂的病因,既涉及遗传基础,又需要环境因素的作用才发病,也称为多因子病(multifactorial disease,MF)。
遗传基础不是一对基因,而是涉及到许多对基因,这些基因称为微效基因(minor gene)。
3、染色体病(chromosome disease):由于染色体数目或结构的改变而导致的疾病称为染色体病。
第一章绪论里的讨论题目遗传:生物物种世代间的延续。
变异:生物亲子个体间的差异遗传学:研究生物的遗传与变异的学科医学遗传学:是遗传学与医学相结合的一门边缘学科,研究对象是与人类遗传有关的疾病,即遗传病遗传病:遗传物质改变所导致的疾病。
性状:是由基因与环境共同作用的结果,性状是基因决定的生物形态,生理,生化特征,临床症状。
Ж遗传病的分类:1、单基因遗传病2、多基因病3、染色体病4、体细胞遗传病5、线粒体遗传病一、单基因遗传病:如果一种遗传病的发病仅仅涉及一对等位基因,其导致的疾病称为单基因病,这个基因称为主基因。
1、常染色体显性(A D)遗传2、常染色体隐性(A R)遗传3、X连锁显性(X D)遗传4、X连锁隐性(X R)遗传5、Y连锁遗传6、线粒体遗传二、多基因病:一些常见的疾病或畸形,有复杂的病因,既涉及遗传基础,又需要环境因素的作用才发病,称为多基因病,也称为多因子病。
多基因病的遗传基础不是一对基因,而是涉及到许多对基因,这些基因称为微效基因。
三、染色体病:由于染色体数目或结构的改变而导致的疾病称为染色体病,染色体数目或结构的改变往往涉及到许多基因,常表现为复杂的综合征。
四、体细胞遗传病:人的体细胞中遗传物质改变而导致的疾病,称为体细胞遗传病。
肿瘤和一些先天畸形。
五、线粒体遗传病:是指因遗传缺损引起线粒体代谢酶的缺陷,导致ATP合成障碍、能量来源不足而出现的一组多系统疾病,也被称为线粒体细胞病。
基因:是有遗传效应的生物分子片段,是控制性状的遗传物质的功能单位,遗传效应是指基因具有复制、转录、翻译、重组、突变及调控功能。
遗传病的特征等位基因:位于同源染色体相对应的位置上,负责控制表达同一性状的DNA片段互称为等位基因。
性状:指的是生物体的形态和生理特征Ж复等位基因:一个基因如果存在多种等位基因的形式,这种现象就称为复等位基因(multiple allelism)。
任何一个二倍体个体只存在复等位基中的二个不同的等位基因。
医学遗传学Medical genetics第一章 绪论遗传现象(遗传基础问题)先天禀赋、其子类父、男女同姓、其生不蕃;一母生九子、连娘十个样。
古希脂亚里斯多德——“类生类”。
英皇维多利亚家族(XR),皇室病——即血友病。
遗传与变异 1、遗传:亲代将自己的特性相对稳定的传给子代。
2、变异:即子代与亲代不同之处。
3、遗传与变异的关系:遗传是稳定的,遗传保证了生物物种的稳定和种族的延续,变异为遗传提供了新的材料,使生物物种得以进化,它们既对立又统一。
健康:指受遗传结构控制的代谢方式与人体环境保持平衡。
健康:机体代谢与周围环境保持平衡受遗传控制疾病:由于遗传结构缺陷或环境的显著改变,打破平衡。
疾病:代谢异常或环境改变打破平衡——遗传缺陷 转基因:从基因库中筛选“目的”基因,以分子克隆方法扩增、鉴定以及转移到不具该基因的细胞、组织和整合到植物中去, 并能在相应的部位表达出目的基因产物,即转基因技术。
转基因动物:携带外源基因,并将外源基因遗传给子代的动物,又能在这些动物体内检查到相应的基因产物或相应症状,这类动物就是转基因动物。
转基因技术本质上是DNA 重组技术; 而“克隆”实际上是无性繁殖。
医学遗传学的任务(临床层次):在于揭示各种遗传性疾病的传递规律、发病机制、诊断和防治措施;遗传医学则为遗传病患者提供临床服务,包括:遗传病的诊断,治疗、筛选、预防、咨询、随访等。
21世纪医学遗传学研究的重点(研究层次):将是多基因复杂病和癌肿,因为随着人类基因组测序的完成,所有的单基因病的致病基因必将全部得到鉴定。
发展史 1859 报道第一例先天性代谢病1866 分离律、自由组合律 Mendel 1869 首次分离DNA Miescher 1903 遗传因子在染色体上 Sutton & Boveri 1909 遗传因子改称“基因” Johannsen1910 连锁与互换定律 Morgan 1944 证明DNA 是遗传物质 Avery 1953 DNA 双螺旋结构 Watson & Crick 1956 确定人体细胞染色体数为46条 蒋有兴 Levan 1966 阐明DNA 遗传密码 Nirenberg, Ochoa ,Khorana 1970 试管内合成基因 Khorana 1972 DNA 克隆技术 1975 DNA 测序 1985 PCR 技术 1990 临床基因治疗 1991 人类基因组研究15年规划启动 1994 人类基因内阻连锁图 1998 人类基因组物理图 2000 人类基因组序列工作草图 2001 人类基因组94%序列草图作出初步分析 2003 人类基因组测序完成:即“人类基因组计划”(HGP )。