遗传学
- 格式:docx
- 大小:14.21 KB
- 文档页数:3
遗传学名词解释1. 基因:生物体遗传信息的基本单位,位于染色体上。
基因决定了生物体的遗传特征。
基因:生物体遗传信息的基本单位,位于染色体上。
基因决定了生物体的遗传特征。
2. 染色体:细胞核中的细长结构,携带着遗传物质。
人类有23对染色体,其中一对性染色体决定了个体的性别。
染色体:细胞核中的细长结构,携带着遗传物质。
人类有23对染色体,其中一对性染色体决定了个体的性别。
3. 等位基因:存在于同一基因位点上的不同基因形式。
个体可以携带两个等位基因中的一种。
等位基因:存在于同一基因位点上的不同基因形式。
个体可以携带两个等位基因中的一种。
4. 显性和隐性:显性基因表现出来的特征会掩盖隐性基因的表现。
只有当个体携带两个隐性基因时,该特征才会显现出来。
显性和隐性:显性基因表现出来的特征会掩盖隐性基因的表现。
只有当个体携带两个隐性基因时,该特征才会显现出来。
5. 杂合子和纯合子:杂合子指一个位点上携带两个不同等位基因的个体,而纯合子指携带两个相同等位基因的个体。
杂合子和纯合子:杂合子指一个位点上携带两个不同等位基因的个体,而纯合子指携带两个相同等位基因的个体。
6. 基因型和表型:基因型是指个体在其基因中的特定基因组合,而表型是由基因型和环境共同决定的个体可观察到的特征。
基因型和表型:基因型是指个体在其基因中的特定基因组合,而表型是由基因型和环境共同决定的个体可观察到的特征。
7. 遗传变异:由基因突变引起的遗传信息的变化。
遗传变异是生物进化的基础。
遗传变异:由基因突变引起的遗传信息的变化。
遗传变异是生物进化的基础。
8. 杂交:不同种类或不同个体之间的繁殖,导致遗传物质的重新组合。
杂交有助于增加遗传多样性。
杂交:不同种类或不同个体之间的繁殖,导致遗传物质的重新组合。
杂交有助于增加遗传多样性。
9. 基因工程:利用分子生物学技术对基因进行改变或操控的过程。
基因工程可以创造具有特定遗传特征的生物体。
基因工程:利用分子生物学技术对基因进行改变或操控的过程。
遗传学的基本概念遗传学是关于遗传变异和遗传传递的科学,它探讨人类、动物和植物的遗传现象。
遗传学的理论研究与实践应用都具有深远的意义。
1. 基因基因是遗传学研究的基本单位,是决定生物性状的基础。
基因是一段有特定功能的DNA序列,并以某种方式进行表达。
基因掌控着许多特征,比如眼睛颜色、头发颜色等等。
2. 突变突变是指基因组中的DNA序列发生了变化。
这种突变可能在DNA复制或修复过程中发生。
突变可能导致细胞发育有问题,或者导致某些功能受到影响。
突变可以是基因变异的一种机制,可以是病理学问题的根源,也可以是种群进化的重要原因。
3. DNA复制DNA复制是指在细胞分裂之前进行的一系列过程。
每个细胞都需要进行DNA复制保证下一代细胞的遗传信息确实准确地传递。
DNA复制期间,DNA链分为两条,由对应的鸟嘌呤和胸腺嘧啶基对来添加新的互补链。
复制完毕后,原DNA与新DNA均被分配到不同的细胞中。
4. 基因表达基因表达是指特定的基因产生特定的蛋白质的过程。
基因表达是非常重要的,因为蛋白质是生物体几乎所有生理过程的组成部分。
基因表达被调节,因此有时基因无法被表达,有时会产生过多或过少的蛋白质。
5. 遗传疾病遗传疾病是由基因突变导致的疾病,这些基因可能来自父母或可能是在胚胎发育期间突变。
遗传疾病的一些症状是明显的,如先天性心脏病,而其他疾病可能不会在一生中产生影响。
6. 基因治疗基因治疗是一种新型的治疗手段,使用基因工程技术加以创新,试图通过细胞改造来根治遗传性疾病和其他健康问题。
基因治疗的目标是找到病因、修复基因、替换缺损等手段来恢复受伤细胞的正常功能。
总之,遗传学是人类、动物和植物生命中不可或缺的组成部分,对人类的健康、环境保护和经济发展至关重要。
了解遗传学的基本概念,对于网络安全、食品安全、生态保护及改善人类的科学研究和自我提高都大有裨益。
遗传学的基本概念遗传学是研究遗传规律和遗传变异的科学,它对人类和其他生物的遗传特征进行研究。
遗传学的基本概念涵盖了基因、遗传物质、遗传变异以及遗传表达等方面,下面将对这些基本概念进行详细介绍。
一、基因基因是生物体内携带遗传信息的基本单位。
它是一段特定的DNA 序列,可以编码特定的蛋白质或RNA分子。
基因决定了生物体的性状和特征,包括外貌、生理机能、行为特征等。
基因通过遗传的方式传递给后代,决定了后代的遗传特征。
二、遗传物质遗传物质是指传递遗传信息的物质,主要包括DNA和RNA。
DNA 是生物体内最重要的遗传物质,它以双螺旋结构存在于细胞核中,编码了生物体的遗传信息。
RNA则是DNA的复制和转录产物,参与蛋白质的合成过程。
三、遗传变异遗传变异是指基因或染色体在传代过程中发生的变化。
遗传变异可以分为基因突变和染色体结构变异两种类型。
基因突变是指基因序列发生改变,导致基因功能的改变,如点突变、插入缺失等。
染色体结构变异则是指染色体的部分区域发生重排、缺失或重复的变化。
遗传变异是生物体多样性的基础,它为生物体适应环境提供了遗传基础,使得物种具有较强的生存和繁殖能力。
四、遗传表达遗传表达是指基因信息转化为生物体内功能蛋白质的过程。
遗传表达包括转录和翻译两个主要步骤。
转录是指DNA的信息被转录成RNA,而翻译是指RNA被翻译成蛋白质。
通过遗传表达,生物体能够根据基因中的信息合成出所需的蛋白质,进而实现生命活动的各种功能。
总结:遗传学的基本概念包括基因、遗传物质、遗传变异以及遗传表达。
基因是生物体内编码遗传信息的基本单位,遗传物质主要包括DNA和RNA,它们承载和传递遗传信息。
遗传变异是基因或染色体在传代过程中发生的变化,为生物体的多样性和适应性提供了基础。
遗传表达是基因信息转化为功能蛋白质的过程,通过遗传表达,生物体可以实现各种生命活动。
遗传学的研究为解析生物体的遗传特征和遗传疾病的发生机制提供了基础。
随着遗传学研究的不断深入,人类对生命的奥秘也会有更加全面的认识。
遗传学基础知识点遗传学是生物学中的一个重要分支,研究个体间遗传信息的传递、表现和变异。
在遗传学的学习过程中,有一些基础知识点是必须要掌握的。
本文将围绕这些基础知识点展开讨论。
1. 遗传物质的本质遗传物质是指携带遗传信息的生物分子,主要包括DNA和RNA。
DNA是双螺旋结构,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶)组成,形成基因和染色体。
RNA则在蛋白质合成中起着重要作用。
2. 孟德尔遗传定律孟德尔是遗传学的奠基人,他根据豌豆杂交实验提出了一系列遗传定律,包括隔离定律、自由组合定律和性联和定律。
这些定律揭示了遗传物质的传递规律。
3. 遗传的分子基础遗传信息的传递和表达是通过DNA分子进行的。
DNA分子在细胞分裂时复制,通过核糖体和tRNA、mRNA参与蛋白质合成,从而实现基因的表达。
4. 遗传性状的表现遗传性状是由基因决定的,在有性繁殖中通过配子随机组合形成。
一对等位基因可以表现为显性和隐性,而性状的表现受到基因型和环境的影响。
5. 遗传变异基因在不同个体间可以发生变异,包括基因突变、基因互作和基因重组等。
这种变异是进化的基础,可以导致个体的遗传多样性。
6. 遗传病与遗传咨询遗传病是由基因突变引起的遗传性疾病,如地中海贫血、囊性纤维化等。
遗传咨询是通过遗传学知识对个体的遗传信息进行评估和风险预测,提供个性化的健康建议。
通过对上述基础知识点的了解,可以更好地理解遗传学的基本原理和应用。
遗传学作为一门重要的生物学学科,为人类健康和生物多样性的研究提供了理论基础和实践指导。
希望本文能够对您的遗传学学习有所帮助。
大学生物遗传学名词解释1. 遗传学(Genetics)是研究物种内遗传特征的科学,包括遗传的法则、遗传变异的机制、遗传信息的传递和遗传信息的表达等。
2. 基因(Gene)生物体中控制特定遗传特征的基本单位。
基因位于染色体上,由DNA序列编码,决定着生物体的遗传性状。
3. 表现型(Phenotype)个体在特定环境条件下所显示的形态、生理和行为特征。
4. 基因型(Genotype)个体在基因层面上的遗传信息组合,由基因组成。
5. 染色体(Chromosome)细胞核中的结构,携带着细胞的遗传物质DNA,是遗传信息的主要载体。
6. 突变(Mutation)遗传物质发生的突发性变异,导致基因或染色体结构和功能的改变。
7. 交叉互换(Crossing Over)染色体在减数分裂过程中的重组事件,导致染色体上的遗传信息重新组合。
8. 遗传变异(Genetic Variation)种群个体间在遗传特征上的差异,是进化的基础。
9. 遗传漂变(Genetic Drift)随机因素导致种群个体在遗传特征上的变化,通常发生在小种群中。
10. 自交(Self-fertilization)个体自身花药中的花粉与个体的雌蕊相结合,使个体自行对自己进行受精。
11. 杂交(Hybridization)来自不同个体或群体的个体进行交配产生的后代,通常具有更广泛的遗传多样性。
12. 突变率(Mutation Rate)在一定时间内个体基因发生突变的频率,用来衡量突变的发生概率。
13. 迁移(Migration)个体或种群之间的基因流动,导致遗传物质的交换和混合。
14. 选择(Selection)环境中某些表现型或基因型的个体具有较高适应度,从而更有可能在繁殖中传递其基因。
15. 群体(Population)一定地理范围内相同物种个体的集合体,具有一定程度的基因流动和遗传变异。
16. 进化(Evolution)生物种群中遗传特征的长期改变,是生物多样性的基础。
第一章1、概念:遗传学——是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
遗传——亲代和子代之间相似的现象。
如种瓜得瓜,种豆得豆。
变异——是指亲代与子代之间,子代个体之间存在着不同程度差异的现象。
如高杆植物品种可能产生矮杆植物;一卵双生的兄弟也不可能一模一样。
2. 遗传学建立和开始发展始于哪一年,是怎样建立?答:孟德尔在前人植物杂交试验的基础上,于1856-1864年从事豌豆杂交试验,通过细致的后代记载和统计分析,在1866年发表了“植物杂交试验”论文。
文中首次提出分离和独立分配两个遗传基本规律,认为性状传递是受细胞里的遗传因子控制的,这一重要理论指导1900年狄〃佛里斯、柴马克、柯伦斯三人同时发现后才受到重视。
因此,1900年孟德尔遗传规律的重新发现,被公认为是遗传学建立和开始发展的一年。
1906年是贝特尔首先提出了遗传学作为一个学科的名称。
3. 简述遗传学对于生物科学、生产实践的指导作用。
答:在生物科学、生产实践上,为了提高工作的预见性,有效地控制有机体的遗产和变异,加速育种进程,开展动植物品种选育和良种繁殖工作,都需在遗传学的理论指导下进行。
例如我国首先育成的水稻矮杆优良品种在生产上大面积推广,获得了显著的增产。
又例如,国外在墨西哥育成矮杆、高产、抗病的小麦品种;在菲律宾育成的抗倒伏、高产,抗病的水稻品种的推广,使一些国家的粮食产量有所增加,引起了农业生产发展显著的变化。
医学水平的提高也与遗传学的发展有着密切的关系。
目前生命科学发展迅猛,人类和水稻等基因图谱相继问世,随着新技术、新方法的不断出现,遗传学的研究范畴跟谁大幅度拓宽,研究内容不断地深化,国际上将在生物信息学、功能基因学和功能蛋白质组等研究领域继续展开激烈竞争,遗产学作为生物科学的一门基础学科越来越显示出其重要性。
遗传学的基本原理遗传学是生物学的一个重要分支,研究遗传信息在生物体内的传递和表达过程。
遗传学的基本原理可以总结为四个方面:遗传物质、遗传变异、遗传定律和遗传规律。
一、遗传物质遗传物质是组成生物体的遗传信息的载体,也是遗传学研究的核心。
在细胞内,遗传物质主要由DNA(脱氧核糖核酸)和RNA(核糖核酸)组成。
DNA是遗传物质的主要分子,携带了生物体所有的遗传信息。
RNA在遗传物质中起到信息传递和蛋白质合成的作用。
二、遗传变异遗传变异是指遗传物质在传递和复制过程中的突变和重组。
突变是指DNA序列的突发性改变,包括点突变和插入/缺失突变等。
重组是指不同DNA分子之间的交换和重排,主要通过DNA重组酶的作用实现。
遗传变异是生物进化和个体差异的基础。
三、遗传定律遗传定律是通过研究遗传物质在个体间的传递规律得出的,其中最重要的是孟德尔遗传定律。
孟德尔通过对豌豆的杂交实验发现了遗传物质的离散性遗传规律。
他总结了两个基本定律:一是基因分离定律,即在杂合个体的后代中,纯合子个体的基因以等位基因的形式分离传递给后代;二是基因自由组合定律,即在杂合个体的后代中,不同基因对独立组合分离。
四、遗传规律遗传规律是指在遗传过程中普遍存在的规律和现象。
最经典的遗传规律包括显性与隐性遗传、连锁不平衡和基因型频率的分布等。
显性与隐性遗传是指遗传物质表现出显性性状和隐性性状的现象。
连锁不平衡是指不同基因在遗传物质中相对位置的固定组合。
基因型频率的分布是指不同基因型在群体中的比例分布。
总结起来,遗传学的基本原理涵盖了遗传物质、遗传变异、遗传定律和遗传规律四个方面。
了解和掌握这些原理可以帮助我们更好地理解生物的遗传机制,推动遗传学的发展和应用。
遗传学的研究不仅对于解决生物进化、遗传疾病等重大问题具有重要意义,也对农业、医学和生物技术等领域产生了深远影响。
大学二年级生物学遗传学导论遗传学是生物学中重要的一门学科,主要研究个体与后代之间的遗传性状传递规律和机制。
它是我们了解生物多样性、进化以及人类健康等方面的基础。
本文将介绍大学二年级生物学遗传学的导论,深入探讨遗传学的基本原理、经典遗传学以及遗传工程等相关知识。
1. 遗传学的基本概念遗传学是生物学的重要分支学科,研究个体与后代之间的遗传性状传递规律和机制。
遗传性状包括生物的形态、生理和生态特征等,通过个体之间的遗传信息传递实现。
2. 遗传物质的基本单位——基因基因是遗传物质的基本单位,携带了遗传信息。
基因位于染色体上,通过遗传物质DNA来传递和储存遗传信息。
基因决定了个体的性状和特征。
3. 不同类型的遗传- 自然遗传:自然遗传是指遗传信息在自然条件下的传递,通过个体繁殖实现。
这种遗传通常符合孟德尔的遗传规律,遵循着分离和分配的原则。
- 人工遗传:人工遗传是指人类通过人为手段干预遗传信息的传递,实现对某些特定性状的选择和改良。
这种遗传通常通过人工控制群体繁殖和基因操作来实现。
4. 经典遗传学经典遗传学是遗传学的最早形式,主要研究自然遗传现象。
经典遗传学奠定了遗传学的基本原则和方法,揭示了孟德尔遗传规律、基因互作和杂交等重要遗传现象。
5. 遗传学的进一步发展- 分子遗传学:分子遗传学研究基因的物质基础和分子机制,是近年来遗传学研究的重要分支。
它通过研究DNA、RNA等分子的结构和功能,揭示基因的表达调控、突变和基因组变异等重要遗传现象。
- 人类遗传学:人类遗传学是研究人类遗传信息传递规律的学科,深入探讨了人类种群的遗传多样性、遗传疾病的发生与预防等重要问题。
6. 遗传工程和基因编辑技术- 遗传工程:遗传工程是通过人工手段改变生物体的遗传信息,实现对特定性状的改良。
常见的遗传工程技术包括转基因技术和蚕丝蛋白等生物材料的改良。
- 基因编辑技术:随着CRISPR-Cas9技术的发展,基因编辑技术在近年来得到广泛应用。
遗传学方法总结遗传学是研究遗传现象和遗传变异的科学。
通过运用不同的遗传学方法,我们可以深入了解生物的遗传特征、遗传传递方式以及遗传变异的原因。
本文将对常用的遗传学方法进行总结和介绍。
一、遗传学方法简介遗传学方法是指通过实验和观察来揭示遗传现象和解决遗传问题的一系列研究手段。
常用的遗传学方法包括遗传分析、细胞遗传学、分子遗传学以及基因工程等。
二、遗传分析遗传分析是通过观察和实验证据来推断或确认一个特定性状的遗传方式的方法。
主要包括遗传连锁分析、显性分析和隐性分析等。
遗传连锁分析是通过观察多个遗传位点之间的遗传连锁关系,来确定它们在染色体上的位置和遗传距离。
这有助于建立染色体的遗传图谱,并推断基因在染色体上的位置。
显性分析是通过跟踪可观察到的显性性状,如红花色与白花色的遗传分离情况,来推断该性状受到主导基因的控制。
隐性分析是通过跟踪隐性性状的遗传,如黑毛色与棕毛色的遗传分离情况,来推断该性状受到隐性基因的控制。
三、细胞遗传学细胞遗传学研究细胞基因的结构、功能以及在遗传变异和遗传信息传递中的作用。
常用的细胞遗传学方法包括染色体观察、细胞分裂观察和染色体工程等。
染色体观察主要通过显微镜观察染色体的形态、数目和结构来揭示染色体的特性和遗传变异现象。
细胞分裂观察包括有丝分裂和减数分裂。
通过观察细胞在有丝分裂和减数分裂过程中染色体的行为,我们可以了解染色体的分离和重组方式。
染色体工程是一项基于细胞基因调控的技术,通过引入、删除或替换染色体上的特定片段,来研究基因的功能和调控机制。
四、分子遗传学分子遗传学研究基因的结构、功能以及在遗传变异和遗传信息传递中的作用。
常用的分子遗传学方法包括DNA测序、PCR技术、DNA 杂交和基因克隆等。
DNA测序技术可以精确地确定基因或基因组中的DNA序列,从而揭示基因的结构和功能。
PCR技术(聚合酶链反应)是一种快速扩增和复制DNA片段的方法,常用于基因的检测和定量分析。
DNA杂交是通过将特定DNA序列与标记物结合,来检测和定位目标基因的方法。
●遗传学是研究生物遗传和变异的科学●遗传、变异和选择是生物进化和新品种选育的三大因素●遗传学研究的任务阐明生物遗传、变异现象及其表现规律。
探索遗传、变异的原因及其物质基础(遗传的本质) 揭示遗传变异的内在规律。
指导动、植物和微生物遗传改良(育种)实践。
提高医学水平,为人民谋福利。
●1900年,孟德尔规律的重新发现,是遗传学建立和发展的一年。
●1909年,约翰生最先提出“基因”一词●1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构模式理论●同源染色体:形态和结构相同的一对染色体●异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为异源染色体。
●染色体组型分析:对生物细胞核内全部染色体的形态特征所进行的分析●性细胞成单存在,体细胞成对的。
●有丝分裂的意义:1.生物学意义:有丝分裂促进细胞数目和体积增加;均等方式的有丝分裂,能维持个体正常生长和发育,保证物种的连续性和稳定性。
2.遗传学意义:核内各染色体准确复制为二,两个子细胞的遗传基础与母细胞完全相同;复制的各对染色体有规则而均匀地分配到两个子细胞中,子母细胞具有同样质量和数量的染色体。
●粗线期:非姊妹染色单体间出现交换●偶线期:各同源染色体分别配对,出现联会现象。
●二价体:各对染色体的对应部位相互紧密并列,逐渐沿着纵向联结在一起,这样的同源染色体叫二价体。
●减数分裂后期I:每极只分到每对同源染色体中的1个,实现了2n数目的减半●减数分裂的意义生物生活周期和配子形成过程中必要阶段,最后形成雌雄性细胞,各具半数染色体(n),保证亲子代间染色体数目的恒定和物种的相对稳定性。
●染色体:细胞分裂时出现的,易被碱性染料染色的丝状或棒状小体,由核酸和蛋白质组成,是生物遗传物质的主要载体,各种生物的染色体有一定数目、形态和大小。
●染色单体:染色体通过复制形成,由同一着丝粒连接在一起的两条遗传内容完全一样的子染色体。
●单倍体:指具有配子染色体数(n)的个体。
遗传学名词解释68599 遗传学(Genetics)是生物学的一个分支,研究生物体遗传信息的传递、变异和表达的学科。
遗传学是建立在生物学、化学、统计学等多学科基础上的一门学科,它的应用范围非常广泛,涉及到人类、动植物、微生物等多种生物类型。
1.基因(Gene):遗传学中,基因是携带生物遗传信息的基本单位。
基因通过DNA序列的方式存在于细胞核中的染色体上。
基因可以是编码蛋白质的基因,也可以是非编码基因,其功能多种多样,包括控制代谢、结构、功能等。
2.DNA:全称为脱氧核糖核酸(Deoxyribonucleic Acid),是生物体内主要的遗传物质。
DNA由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶)构成,以序列的方式存储着遗传信息。
DNA的主要功能是储存和传递遗传信息,通过复制和转录形成RNA,进而指导蛋白质的合成。
3.染色体(Chromosome):染色体是DNA的主要载体,是遗传信息在细胞核内的重要组织形式。
在细胞分裂过程中,染色体会发生特定的形态变化,并通过DNA的复制和重组实现遗传信息的传递和变异。
4.遗传变异(Genetic Variation):遗传变异是指生物群体中存在的遗传信息的差异。
这种差异可以通过基因突变、基因重组和染色体变异等方式产生,是生物进化的重要驱动力。
5.遗传密码(Genetic Code):遗传密码是DNA序列和蛋白质序列之间的对应关系。
每一种氨基酸由一种或多种三联体密码子(由三个相邻的DNA碱基组成)所决定。
在翻译过程中,每一种密码子只能对应一种氨基酸,这种一一对应的关系就是遗传密码。
6.转录(Transcription):转录是指由DNA的一条链为模板合成RNA的过程。
转录过程中,以DNA的一条链为模板合成单链RNA分子的过程称为初级转录,再经过剪切和修饰形成成熟的RNA分子。
7.翻译(Translation):翻译是指以mRNA为模板合成蛋白质的过程。
翻译开始于mRNA的起始密码子,终止于其终止密码子。
遗传学基础知识遗传学是研究遗传现象和遗传规律的科学,它探索了生物个体内基因的传递和变异,以及对后代遗传特征的影响。
遗传学是现代生物学的重要分支,对人类进化、疾病的遗传基础以及基因工程等领域具有重要的应用价值。
本文将介绍遗传学的基础知识,包括遗传物质、遗传变异、遗传规律和遗传工程等重要内容。
一、遗传物质遗传物质是指存在于生物细胞内的携带遗传信息的分子,最为重要的遗传物质是DNA(脱氧核糖核酸)。
DNA是由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胰嘧啶)组成的双螺旋结构,它通过不同的碱基序列来存储和传递生物个体的遗传信息。
DNA通过复制、转录和翻译等过程实现了基因的遗传。
二、遗传变异遗传变异是指基因在遗传过程中发生的改变。
遗传变异是生物多样性的重要基础,它包括基因突变、染色体重组和基因转移等。
基因突变是指DNA序列的改变,可以分为点突变、插入和删除等不同类型。
染色体重组是指染色体的片段在同一染色体内或不同染色体之间的重新组合。
基因转移是指基因从一个个体传递到另一个个体。
三、遗传规律遗传规律是研究遗传现象和遗传变异的基本规律。
著名的遗传学定律包括孟德尔定律、染色体理论、分离与联合及自由组合定律等。
孟德尔定律是奥地利修道士孟德尔发现的,包括了基因的分离和自由组合规律。
染色体理论由美国科学家多布谷发现,揭示了基因位于染色体上这一事实。
分离与联合定律描述了基因与染色体在遗传过程中的行为规律。
四、遗传工程遗传工程是应用遗传学知识进行基因操作和转移的技术。
遗传工程在改良农作物、治疗遗传疾病以及生物工业等方面具有广泛的应用。
其中,基因克隆、转基因技术和基因编辑是常用的遗传工程技术。
基因克隆是指通过体外复制DNA来获得大量特定基因的技术。
转基因技术是指将外源基因导入宿主细胞并表达的技术。
基因编辑是一种精确修改生物基因的技术,如CRISPR/Cas9技术。
结语遗传学为我们了解遗传现象和遗传规律提供了基础,它对人类健康、农业生产和环境保护等领域都具有重要意义。
有关遗传的知识点总结遗传学的基本概念1. 基因:是控制遗传信息传递和表达的基本单位。
基因由DNA组成,是细胞内的功能性DNA片段,负责编码生物个体的遗传特征。
2. 染色体:染色体是基因的携带者,由DNA和蛋白质组成。
人类细胞中有23对染色体,其中一对是性染色体,决定性别的遗传信息。
3. 遗传物质:指DNA和RNA,是生命体遗传信息的传递者。
遗传规律1. 孟德尔遗传规律:孟德尔通过豌豆杂交实验,提出了基因的分离定律、自由组合定律和统计定律,奠定了现代遗传学的基础。
2. 确定遗传规律:染色体对基因的定位和分离规律。
例如,性连锁遗传,杂合子的分离和重组等规律。
3. 随机性:遗传过程中会有一定的随机性,例如基因重组的概率,基因突变的出现等。
遗传变异1. 突变:指染色体结构或基因序列的突然改变,是生物进化和遗传变异的主要原因。
2. 重组:在减数分裂过程中,染色体的交叉互换导致新的基因组合产生。
3. 杂合子形成:由两个不同亲本的基因组合而成的个体称为杂合子,杂合子的出现增加了遗传物质的多样性。
应用遗传学的领域1. 生物育种:利用遗传学的知识进行植物和动物的育种,提高产量和品质。
2. 医学遗传学:研究人类基因的结构和功能,分析基因与疾病的关系,进行遗传病的诊断和预防。
3. 法医遗传学:利用DNA鉴定技术对犯罪嫌疑人进行身份鉴定,进行亲子关系的鉴定等。
4. 进化遗传学:研究物种的起源和进化过程,揭示生物多样性的形成机制。
遗传学的发展趋势1. 基因工程:利用分子生物学技术进行基因的修饰和操纵,生产优良的转基因生物。
2. 基因组学:研究生物的全基因组结构和功能,揭示基因组的结构和组织特征。
3. 个性化医学:根据个体的基因信息制定个性化的治疗方案,提高疾病治疗的效果。
4. 环境遗传学:研究环境因素对遗传变异的影响,揭示环境和遗传因素的相互作用关系。
总之,遗传学是生命科学中一个重要的研究领域,随着科学技术的不断发展,遗传学将为人类生活和健康带来更多好处。
遗传学知识:遗传学概述遗传学是一门探究生物遗传特征的科学,研究的对象主要是基因的本质、基因的结构、遗传规律、遗传变异、基因复合以及基因在个体、族群和物种间传递的规律。
一、基因的本质基因是生命的基本单位,指导生命所有的生理、形态和行为特征。
基因在物质上表现为DNA序列,而且基因是DNA分子的一个特定区域,可以编码蛋白质、RNA或特定功能的DNA链。
二、基因的结构染色体是生命的载体,是由DNA多条螺旋式双链随着该具有特定调控作用的蛋白质构成的一种体系结构。
基因是染色体的基本单位,一般来说,一个基因位于某处染色体上称为一个座位位置,通常用基因符号代表,例如,r、A、B、E等。
三、遗传规律1.孟德尔遗传规律孟德尔遗传实验是遗传学的基础,揭示了基因的显性和隐性方式传递。
2.分离规律由孟德尔提出,指出杂交子代的表型存在分离现象,即在孟德尔实验中,F2代的表型遗传规则是分离的,而每种表型都是独立的继承,一种基因的表型不会影响其他基因的表型。
四、基因变异基因变异是指基因的序列出现变化,通常指的是基因突变。
BASELINE (Brain-specific Angiogenesis Inhibitor 2)基因的突变是与乳腺癌有关的,这一突变可以导致肿瘤滋生和生长,进而导致疾病的形成。
五、基因复合基因复合是指多个基因共同决定一个特定的表型,这种现象被称为合成,它是基因互作的结果,因此,这些基因不能单独解释表型。
六、基因传递基因传递包括基因在个体和种族间的传递。
基因在传递过程中会发生基因重组、染色体重组等现象。
种族间传递的结果是基因多样性,运用DNA指纹鉴别是一种有效的工具。
总之,遗传学是一种重要的科学,能够为生物学、医学、农业等领域的认识和实践提供有用的指导。
理解遗传学,尤其对人类篇头发,可以更好地认识人体、预防人体疾病和治疗疾病,对于建立健康的人体也具有积极的意义。
遗传学知识点总结1. 遗传学的基本概念遗传学是研究生物体遗传现象和遗传规律的一门生物学科学。
它是研究生物的遗传现象、遗传规律及其内在机理的学科。
遗传学研究的对象是生物体内的基因,而基因是操纵着生物体发育和遗传特性的物质基础。
遗传学所研究的基本问题包括:基因的特性、遗传的契约、遗传变异、遗传的规律、遗传的机理和遗传的应用。
2. 遗传变异在所有的生物体中,都存在着遗传变异现象。
遗传变异是指种群内个体之间的遗传性差异。
在多种多样的生物性命中,遗传变异是生物种群规模维系的前提条件。
遗传变异包括两种类型:一种是基因型的变异,即单个基因型的变异;另一种是表现型的变异,即个体的外部表现差异。
在生物体繁殖过程中,遗传变异是不可避免的,而且它提供了生物进化的基础。
遗传变异对群体遗传学和进化遗传学都是非常重要的。
3. 基因传递基因传递是指基因在生物体繁殖过程中传递给后代的过程。
在有世代繁殖的生物体中,基因在个体繁殖过程中,通过生殖细胞传递给后代,并在后代中表现出来。
基因传递遵循一定的遗传规律,其中最引人注目的是孟德尔的遗传规律。
孟德尔通过豌豆杂交实验,发现了基因的分离规律和再组合规律,从而揭示了基因的遗传规律。
基因传递不仅有助于解释基因在生物体中的传递方式,还有助于解释基因在群体中的遗传分布规律。
因此,基因传递是遗传学研究的基本内容。
4. 基因工程基因工程是一种通过技术手段对生物体进行基因改造的方法。
通过基因工程,可以将外源基因导入到宿主生物体中,并使之表达。
基因工程已经在农业、医学、环境保护等领域得到广泛的应用。
在农业上,基因工程可以通过转基因作物等手段,提高植物的抗病性、耐旱性和抗虫性,从而提高农产品的产量和质量。
在医学上,基因工程可以通过基因治疗等手段,治疗一些遗传性疾病。
在环境保护方面,基因工程可以通过生物技术净化污染环境。
基因工程是遗传学的一个重要领域,也是人类社会发展的一个重要方向。
5. 群体遗传学群体遗传学是研究种群内个体之间遗传关系的一门学科。
什么是遗传学1.什么是遗传学?遗传学是指研究生物体的遗传、进化和变异的科学。
它是系统和定量的研究生物体遗传特征的发生、记录和变化的一门学科,从基因的组成、结构和功能进行研究,从蛋白质组和基因组遗传规律进行研究,以及植物和动物种群和群体之间的遗传变异等研究。
2.遗传学的发展历程遗传学的历史可以追溯到古希腊的苏格拉底时代,他把生物世界划分为“人类”和“自然”,并将自然分为“有机体”和“无机体”,把无机物质分为“自身”和“自身之外”,形成“选择论”,其后存留下继续发展的遗传学研究。
到18世纪洛克分析并形成“像 §§承继”的认识,19世纪遗传学科又有了韦伯和穆勒等人的火种,20世纪前后质粒学和基因学形成,推动了遗传学研究的巨大发展,它从探究基因的基本组成及功能开始,到后来将基因应用于动物育种、分子生物学和生物技术等领域形成一系列研究方法,可以说是最先研究和发展动植物遗传学的学科。
3.认识基因基因是遗传物质的单位,是一种把特定染色体或核酸信息传递给下一代的化学物质。
如今的研究结果表明, RNA和DNA 是基因的基本单位,而蛋白质只是具体调节和实施生命功能的介质,除此之外, DNA 组织还与其他物质如脂肪、碳水化合物等有关。
同样,研究验证了基因是永久性的,它们可以在细胞分裂时传递到下一代。
4.遗传学的应用以更准确、全面、连贯的方式了解和控制生物体的遗传变异,以及恢复受破坏的生态环境,是遗传学研究的基本目标。
生物育种是遗传学研究中最重要的部分,使用育种学实验,利用遗传学原理、特定条件和其他属性,改良植物和因动物的基因组,以增加抗病力和抗逆性,以及各种营养成分,以及提高生产效率和产量,是生物育种研究的主要任务。
此外,由于遗传学可以解释和治疗遗传病,因此可以用来测试婴儿的遗传性疾病,以及使用克隆技术研究和治疗生物多样性,更先进的技术可以改变儿童的基因,以抵抗他们的疾病。
5.总结遗传学是一门研究生物体遗传、进化和变异的学科,其历史可以追溯到古希腊的苏格拉底时代,而后又有众多名家贡献,如今的研究结果表明,基因的基本单位是RNA、DNA及蛋白质,基因可以永久性的传递到下一代。
遗传学名词解释遗传学是研究物种遗传特征传递和变异规律的科学,它揭示了生物的遗传信息如何通过DNA分子在不同代际之间传递和改变,并解释了生物体之间的遗传相似性和差异性。
1. 基因:基因是生物体继承和表达遗传信息的基本单位,是确定个体性状的遗传因子。
基因是DNA分子上的一段编码区域,可以编码蛋白质。
人类基因组中约有20000-25000个基因。
2. 纯合:指某一基因型的个体两个控制一个遗传特征表达的基因都相同。
3. 杂合:指某一基因型的个体两个控制一个遗传特征表达的基因不相同。
4. 突变:突变是指基因序列发生突然而稳定的改变,可以是基因中一对碱基的替代、删除或插入等。
突变是遗传变异的重要来源。
5. 筛选:筛选是指根据目标特性从某一群体中选择出对此特性有利的个体或基因型,以促进所选特性在群体中的积累。
6. 群体遗传:群体遗传是指对于遗传变异的整个群体(种群)而言的遗传现象,主要包括基因频率、群体力学和基因漂移等。
7. 基因频率:基因频率是指在群体中某一特定等位基因的百分比,可以通过统计基因型个体的比例来估算。
8. 随机自交:随机自交是指同一个体两个不同的配子对合子过程,它使得不同个体之间某些基因频率发生改变,从而促进基因组内的基因重组。
9. 亲缘关系:亲缘关系是指个体之间基因的共享程度,可以通过比较其等位基因的相似性来衡量。
亲缘关系是遗传分析的基础,对于研究家族树和遗传疾病有重要意义。
10. 分离定律:分离定律(孟德尔定律)是指在纯合自交的条件下,同一基因的不同等位基因在合子生成过程中独立分离和重组的规律。
11. 表观遗传学:表观遗传学研究的是基因表达受到环境和生活方式等非遗传因素影响的现象。
它关注的是基因表达模式的可塑性和可逆性。
12. 整合遗传学:整合遗传学研究的是基因组级别的遗传现象,包括基因组结构和功能的高级调控机制。
它关注的是基因组的整体性和协同性。
总之,遗传学是研究生物遗传信息传递和变异规律的学科,它涉及基因、突变、筛选、群体遗传等概念,对于理解生物遗传本质和应用于遗传疾病诊断、育种改良等方面具有重要意义。
(完整版)遗传学知识点归纳(整理)遗传学是生物学的一个分支学科,主要研究遗传物质的不同表现形式和遗传变异规律。
下面将介绍一些遗传学的基本知识点。
1.基因和染色体基因是生物体中控制遗传性状的基本单位。
在细胞核中,基因位于染色体上。
染色体是一条由DNA组成的长链,携带着生物体所有的遗传信息。
人类细胞中有46条染色体,其中23条来自父亲,23条来自母亲。
每条染色体都有特定的基因数目和位点,基因位于染色体的特定区域,称为基因座。
2.基因型和表型一个生物体的基因型是指其染色体上的基因组合情况。
而表型则是指基因型所决定的外表现形式。
例如,人眼睛颜色的基因型可能是BB、Bb或bb,而表型则是指眼睛的实际颜色。
3.等位基因和显性隐性基因有不同的形式,称为等位基因。
一个基因座上可以存在两个相同或不同的等位基因。
如果两个等位基因对表型的影响相同,则称其遗传方式为显性。
否则,其遗传方式为隐性。
例如,人类中黑眼睛的等位基因为显性,而蓝眼睛的等位基因为隐性。
4.遗传规律遗传规律是遗传学的基本原理。
著名的遗传学家门德尔发现了自然选择和基因遗传的基本原则,创立了遗传学的基础。
其中,最为重要的遗传规律有三条,分别是基因分离定律、自由组合定律和显性与隐性规律。
5.遗传变异遗传变异是指个体间或群体内遗传组成差异的存在。
遗传变异并不一定表明遗传缺陷或疾病,有些变异可能使个体更适应环境,提高生存能力。
例如,一些人拥有对疾病的抗性等特殊遗传优势。
6.突变和突变模型突变是指DNA序列的改变,可导致基因表达发生异常,进而影响表型。
突变可以是自然发生的,也可以是受到化学物质、放射线等影响引起的。
突变模型则是一种定量描述突变率的数学模型,可以用于研究群体间遗传变异的规律。
7.遗传工程和生物技术遗传工程和生物技术是遗传学应用的主要领域。
遗传工程通常利用现代分子生物学技术进行基因组修饰,用于改良或创造新的品种,以满足人类需求。
而生物技术则是指利用生物体特殊的生理、代谢或分子机制进行研究或应用的技术,例如基因片段克隆、DNA测序、酶学和生物反应器工程等领域。
遗传学名词解释遗传学是研究遗传现象和遗传规律的科学学科,通过研究遗传物质的传递、变异和表现方式,揭示生物的遗传机制和演化过程。
以下是对一些遗传学相关名词的解释。
1. 基因(Gene):位于染色体上的一段DNA序列,指导生物体的发育、功能和特征。
基因是遗传信息的基本单位。
2. 染色体(Chromosome):细胞核中包含遗传信息的结构,由DNA和蛋白质组成。
染色体通过细胞分裂进行遗传。
3. 遗传物质(Heredity Material):指传递给后代的基因和染色体,包括DNA和RNA。
遗传物质携带了生物体的遗传信息。
4. 突变(Mutation):指遗传物质中的变异现象,可以是基因序列的改变、插入或缺失。
突变是遗传多样性产生的重要原因。
5. 表型(Phenotype):生物体在特定环境下呈现的形态、结构和功能,在遗传学研究中用于描述个体的可观察性状。
6. 基因型(Genotype):生物体在遗传物质中基因的组合情况,决定了个体的遗传特征。
7. 显性(Dominant):指在基因型中表现为显著性状的基因。
显性基因会掩盖同一位点上的隐性基因的表现。
8. 隐性(Recessive):指在基因型中只有在纯合状态(两个隐性基因)下才会表现的基因。
9. 纯合子(Homozygous):指在基因型中,同一位点上两个基因均相同的情况,可以是两个显性基因或两个隐性基因。
10. 杂合子(Heterozygous):指在基因型中,同一位点上两个基因不同的情况,一个为显性基因,一个为隐性基因。
11. 遗传图谱(Genetic Map):用于指示染色体上基因相对位置和距离的图谱。
遗传图谱基于遗传重组频率的测定。
12. 遗传多样性(Genetic Diversity):指种群或物种内的遗传变异程度。
遗传多样性对于生物体的适应性和进化具有重要作用。
13. 回交(Backcross):指将杂种的后代与其一个纯种亲本进行交配。
通过回交可以回到纯种亲本,并筛选出特定的遗传特征。
(1)Mendel孟德尔:提出分离和自由组合规律;
(2)Morgan摩尔根:提出连锁互换及伴性遗传规律;
①提出‚性状连锁遗传规律‛,②提出染色体遗传理论?细胞遗传学,③著‚基因论‛:认为基因在染色体上直线排列,创立基因学说。
(3)Muller穆勒:1927用射线诱发果蝇突变成功;(4)Beadle比德尔和 Tatum:1941年提出‚一个基因一种酶‛的学说;
(5)Avery艾弗里,Hershe赫尔希y&Chase蔡斯:Avery 用纯化因子研究肺炎双球菌的转化实验中证明遗传物质是DNA而不是蛋白质;Hershe&Chase1952年噬菌体侵染细菌再次确认了DNA是遗传物质;
(6)Watson 和 Crick :提出 DNA 双螺旋结构模型;(7)Chargaff:提出碱基配对法则;(8)Crick:1958年提出中心法则;
(9)Monod莫诺和 Jacob雅各布:1961年提出‚操纵子学说‛。
(10)Bateson贝特逊:1905年,给遗传学正式命名genetics.. 从香豌豆中发现性状锁
(11)McClintock麦克林托克:1951年发表论文,提出玉米中存在转座因子,改变了基因在染色体上位置不变的观念发现了转座子
(12)Berg&Cohen:Berg:在离体的条件下首次合成重组DNA; Cohen:在体外构建了具有功能的细菌质粒。
开创基因工程先河
(13)约翰生Johannsen:①1909年发表‚纯系学说‚:明确区别基因型和表现型②最先提出‚基因‛一词:替代遗传因子概念。
在遗传学的发展过程中,Lamarck提出了器官的用进废退和获得性遗传等学说;Darwin达尔文1859年发表了著名的物种起源,提出了以自然选择为基础的生物进化理论;于1892年提出了种质学说,认为生物体是由体质和种质两部分组成的;孟德尔1866年发表了《植物杂交试验》,认为性状的遗传是由遗传因子控制的,并提出了遗传因子的分离和自由组合定律;摩尔根以果蝇为材料,确定了基因的连锁程度,创立了基因学说。
沃特森和克里克提出了著名的DNA分子双螺旋结构模式,揭开了分子遗传学的序幕。
遗传和变异以及自然选择是形成物种的三大因素。
一、当今遗传学研究的关键领域是什么?你认为遗传学在21世纪会有哪些重要发展和应用前景?
关键领域就是重大遗传疾病的遗传机制,
1.遗传学与农牧业
作物育种:杂交水稻、优质小麦、转基因植物等,克隆动物
2.遗传学与医药业
人类疾病四大难题:恶性肿瘤、心血管疾病、遗传病、某些病毒感染(如AIDS)都与遗传学密切相关——发病机制、预防、治疗、干预等
在不同遗传病的病因中,遗传因素与环境因素所占比重各不相同,但是到底哪一种起到何种程度的作用却因具体疾病而异。
当代遗传学特点:遗传学是一门处于发展巅峰时期的年轻学科。
目前遗传学的前沿已从对原核生物的研究转向高等真核生物,从对性状传递规律的研究深入到基因的表达及其调控的研究。
HGP的意义及对人类生活的影响(2000年6月26日,美国总统克林顿在白宫举行记者招待会,郑重宣布:经过上千名科学家的共同努力,被比喻为生命天书的人类基因组草图已经基本完成(测序完成97%,序列组装完成85%)。
基础研究:人类种族的起源;人的生、老、病、死;细胞分化、胚胎发育、人类思维、人类记忆的高级生命活动的分子基础。
应用研究:将建立疾病诊断、疾病治疗、遗传保健及优生优育等全新的人类医学。
可能的不利影响:对社会、伦理道德、法律等方面的影响。
二、前人已经证明了DNA是遗传物质。
若请你用现代分子生物学的技术方法,将如何设计实验证明DNA是遗传物质?
1,肺炎双球菌实验格里菲斯以R型和S型菌株作为实验材料进行遗传物质的实验,他将活的、无毒的RⅡ型(无荚膜,菌落粗糙型)肺炎双球菌或加热杀死的有毒的SⅢ型肺炎双球菌注入小白鼠体内,结果小白鼠安然无恙;将活的、有毒的SⅢ型(有荚膜,菌落光滑型)肺炎双球菌或将大量经加热杀死的有毒的SⅢ型肺炎双球菌和少量无毒、活的RⅡ型肺炎双球菌混合后分别注射到小白鼠体内,结果小白鼠患病死亡,并从小白鼠体内分离出活的SⅢ型菌。
证明了S型细菌中含有一种转化因子,将R型细菌转化成了S型细菌,实际转化因子就是DNA,但是当时并没有提出DNA这个名词,
另外,关于肺炎双球菌转化实验有两个,一个是格里菲斯的体内转化实验,另一个是体外转化实验(艾弗里的体外转化实验)前者证明了转化因子(DNA)是遗传物质,没有得出蛋白质与遗传物质的关系,后者证实了蛋白质不是遗传物质。
2,噬菌体侵染实验Alfed Hershey和Martha Chase(1952)用放射性同位素35S标记蛋白质,32P标记DNA。
宿主菌细胞分别放在含35S或含32P的培养基中。
宿主细胞在生长过程中就被35S或32P标记上了。
然后用分别被35S 或32P标记的细菌,并在这些细菌中复制增殖。
宿主菌裂解释放出很多子代噬菌体,这些子代噬菌体也被标记上35S 或32P。
接着,用分别被35S,或32p标记的噬菌体去感染没有被放射性同位素标记的宿主菌,然后测定宿主菌细胞带有的同位素。
被35S标记的噬菌体所感染的宿主菌细胞内很少有35S,而大多数35S出现在宿主菌细胞的外面。
也就是说,35S标记的噬菌体蛋白质外壳在感染宿主菌细胞后,并未进入宿主菌细胞内部而是留在细胞外面。
被32P 标记的噬菌体感染宿主菌细胞后,测定宿主菌的同位素,发现32P主要集中在宿主菌细胞内。
所以噬菌体感染宿主菌细胞时进入细胞内的主要是DNA。
三、你如何理解和认识DNA复制的基本规则?请举例加以说明。
(1)复制过程是半保留的。
(2)细菌或病毒DNA的复制通常是由特定的复制起始位点开始,真核细胞染色体DNA复制则可以在多个不同部位起始。
(3)复制可以是单向的或是双向的,以双向复制较为常见,两个方向复制的速度不一定相同。
(4)两条DNA链合成的方向均是从5’向3’方向进行的。
(5)复制的大部分都是半不连续的,即其中一条领头链是相对连续的,其他随后链则是不连续的。
(6)各短片段在开始复制时,先形成短片段RNA作为DNA合成的引物,这一RNA片段以后被切除,并用DNA
填补余下的空隙。
四、真核生物染色体端粒的作用和功能有哪些?端粒酶的主要功能是什么?
. 端粒功能:(对于线型染色体的结构和稳定起重要作用)
1、防止染色体末端为DNA酶酶切:端体部分DNA受某些蛋白质保护,从而不被核酸外切酶识别,起封口作用。
2、防止染色体末端与其他DNA分子的结合。
3、使染色体末端在DNA复制过程中保持完整。
端粒酶的功能
端粒酶的核心作用是延长端粒,从而维持端粒在复制分裂中保持一定长度,为细胞具有不断复制提供遗传基础。
五、何谓增强子?增强子的主要作用特点有哪些?如何证明这些作用?
增强子是指能够使基因转录频率明显增加的 DNA序列。
①具有远距离效应。
②无方向性。
③顺式调节。
④无物种和基因的特异性。
⑤具有组织特异性。
例如免疫球蛋白基因的增强子只有在B淋巴胞内,活性才最高。
⑥有相位性。
⑦有的增强子可以对外部信号产生反应。
六、在真核生物mRNA前体加工中,加尾和加帽的生物学功能有哪些?你如何理解?
帽子结构的功能: 1、帽子结构使mRNA 5′免遭核酸酶的破坏。
2、有帽子结构的mRNA更容易被蛋白质合成的起始因子所识别,从而促进蛋白质的合成。
3、有助于mRNA越过核膜,进入胞质
加尾的功能:有利于mRNA穿过核孔;稳定mRNA;增强翻译效率。
加帽的功能:mRNA稳定;增加蛋白质合成效率;
帽poly(A)是mRNA由细胞核进入细胞质所必需的形式,提高了mRNA在细胞质中的稳定性。
当mRNA刚从细胞核细进入胞质时,其poly(A)较长,随着mRNA在细胞质内逗留时间延长,poly(A)逐渐变短消失,mRNA开始降解(mRNA 计数器,可能与其寿命及半衰期有关!)。
真核生物mRNA大都具有poly(A)尾巴,这一特性已被广泛应用于分子克隆。
常用寡聚dT片段与mRNA上的poly(A)相配对,作为反转录酶合成第一条cDNA链的引物子结构对mRNA前体剪接是必需的。
七、简述基因概念的演变。
1、孟德尔的‘遗传因子’1909年,W.L.Johannsen 提出gene 一词
2、1910年,摩尔根证明基因位于染色体上
3、1928年Griffith 1944年Avery证明DNA是遗传物质
4、watson,crick DNA double helix
5、crick 中心法则三联体密码,1957 S.Benzer顺反子
6、1961 F.Jacob,J.Monod 操纵子
7、B.McClintock 转座子
8、断裂基因 1978年噬菌体重叠基因。