四、两种特殊情况的处理. 第一种特殊情况是在计算各行各列元素值的过程中 出现某一行第一列的元素值为零, 而这一行其它各列的 元素值不全为零. 例3: 设系统的特征方程为 D( s ) = s 4 + 2s 3 + s 2 + 2s + 1 = 0 解: s 4 1 1 1 用一大于零的无穷小量 3
s s2 s1 s0
2 0(ε ) 2ε − 2 ε 1 2 0 1 0 0 0 ⇒ 2− 2 ε 0 0
ε
代替第三行第一列的零 参与以下各行各列元素 值的计算.
因为 ε 是大于零的无穷小量, 所以 (2 − 2 / ε ) < 0 系统不稳定, 且有两个根在s的右半平面上. 教材 介绍了处理第一种特殊情况的另一种方法,也可行,不 再介绍.
s1 1 3 0 0 0
从第一列都大于零可见,好象系统是稳定的。注意此时还要 计算大小相等位置径向相反的根再来判稳。由辅助方程求得: s1, 2 = ± j 2 , s3, 4 = ± j 2 ( s 2 + 2)( s 2 + 4) = 0 , 纯虚根,此时系统是临界稳定的。控制工程上认为是不稳定 的。
其系统稳定的必要条件是:上式中各项系数为正数。
对于三阶或以上系统,求根是很烦琐的。于是就有了以下 描述的代数稳定性判据。
三、 劳斯稳定性判据 设线性系统的特征方程为
D ( s ) = a0 s + a1s
n
n −1
+ + an −1s + an = 0
式中 a0 > 0 , 构造如下劳斯行列表:
s1 − 6 0 0 s0 5 0 0
[例]系统的特征方程为: s 5 + 2 s 4 + 24 s 3 + 48s 2 + 23s + 46 = 0 该 系统稳定吗?求出每一个极点并画出极点分布图。 [解]:劳斯阵如下