人教版【教案】 乘法公式——添括号
- 格式:doc
- 大小:211.50 KB
- 文档页数:3
乘法公式(3)――添括各位老师大家好,今天我说课的题目是人教版数学八年级上册第十四章第二节《乘法公式(3)――添括》,下面我从说教材、说教法、说学法、说教学过程以及说教学反思等几个方面对本课的设计进行说明。
一、说教材1、本节教材的地位和作用本节课是在学生学习去括及整式乘法公式的基础上,重点研究了如何通过去括法则探究添括法则、运用添括法则进行整式变形的课题。
添括是本章的一个难点,为今后学习因式分解、分式的运算以及解方程等内容做好铺垫。
因此,本节课的内容在初中数学学习中起着承前启后的作用,通过本节课的学习可以使学生的思维变得更加开阔,也对以后更好的学习数学知识有很大的帮助。
2、教学目标(1)知识与技能:使学生掌握添括法则,会运用法则进行整式变形,进一步灵活运用乘法公式进行计算。
培养学生独立思考,分析及归纳能力。
(2)过程与方法:经历由去括到添括的探索过程,培养学生的逆向思维能力;通过熟练运用添括法则,渗透类比、转化和整体思想。
(3)情感态度与价值观:引导学生在独立思考的基础上,积极参与讨论,逐步培养学生的合作交流意识。
3、重点,难点分析:由于添括是灵活运用整式乘法公式的基础,因此,添括法则及其应用是本节的教学重点。
又由于在“-”后面添括时,学生很容易犯只改变被括到括内的某一项的符,而忽视改变被括到括内的各项符的问题。
因此,在“-”后面添括法则及其应用是本节课的教学难点。
下面,为了突出重点,突破难点,使学生能达到本节课设定的教学目标,我再谈谈本节课的教法和学法。
二、说教法以启发式教学为主,讨论、交流合作展示等方法为辅。
整个教学过程中,我通过让学生观察、思考、讨论、合作、展示,充分调动学生的学习积极性,让学生在教师的引导下始终处于一种积极的学习状态,充分体现学生是学习的主人,教师只是教学活动的组织者、合作者、参与者。
三、说学法按照新课改生本课堂的要求,把学习的主动权还给学生,提倡积极主动、勇于探索、合作交流的学习方式,体现学生在教学活动中的主体地位。
施秉县第三中学教师集体备课教案主备教师小组教师
上课时间年月日(星期)
第周第课时累计课时
课题14.2.2(2)添括号法则
教学目标:
1.类比去括号法则理解添括号法则。
2.能准确运用添括号法则进行计算。
3.通过经历添括号法则的探究,培养逆向思维能力。
教学重点:
掌握添括号法则的运用
教学难点:
添括号法则在乘法公式中的运用
教学方法及措施:
探究合作
教学过程修订、增减复习导入
1.去括号:
(1)4+(5+2)==
(2)4-(5+2)= =
(3)a+(b+c)=
(4)a-(b-c) =
2.去括号法则:
去括号时,如果括号前是,去括号后,括号里的各项都;如果括号前是,去括号后,括号里的各项都。
反过来,你能尝试得到添括号法则吗?
探究新课
添括号法则探究
阅读教材P111例5之前的内容,完成下面的填空:
(1)a+b+c=a+ ;
(2) a-b+c=a- .
归纳:添括号法则如果括号前是添“+”,括到括号里的各项都;
如果括号前面是添“-”,括到括号里的各项都。
范例
填空:(1)a-b-c=a- ; (2) a+b+c=a- .。
14.2 乘法公式(第3课时)
教学内容
添括号.
教学过程
一、导入新课
在有理数或代数式运算中,我们经常会遇到需要将某几个数(或代数式)结合在一起,此时,就需要添加括号,可使运算起来就更简便.
二、探究新知
1.添括号
教师引导学生回忆除以去括号的法则.
a+(b+c)=a+b+c;
a-(b+c)=a-b-c.
教师指出:如把上式反过来,就得到添括号法则:
a+b+c=a+(b+c);
a-b-c=a-(b+c).
也就是说,添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.
练习:填空(1)5a+2b-3c=5a+( );(2)5a+2b-3c=5a-( ).
参考答案:(1)5a+2b-3c=5a+(2b-3c);(2)5a+2a-3a=5a-(2b+3c).
2.添括号的应用
例5 运用完全平方公式计算:
(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.
教师及时点评学生的解答,并出示标准步骤.
提示:有些整式相乘时,需要先作适当变形,然后再利用公式.
练习:(2a-3b-4)(2a+3b+4).
答案:4a2-9b2-24b-16.
三、课堂小结
1.记住添括号的法则.
2.会熟练应用添括号及乘法公式解决问题.四、布置作业
习题14.2第3题.
教学反思:。
2.2 添括号法则教学设计-2022-2023学年人教版数学七年级上册一、教学目标•理解并掌握添括号法则的概念和运算规则。
•能够运用添括号法则进行简单的数学运算。
•发展学生的逻辑思维和解决问题的能力。
二、教学准备•教师准备:课件、白板、黑板、彩笔、练习题等。
•学生准备:课本、笔、本子。
三、教学过程步骤一:引入添括号法则1.导入:让学生回顾上节课学习的内容,简要复习代数式和代数式的运算。
2.提问:举例问学生如何计算以下表达式:4 × 3 + 2 × 5。
3.引导学生思考:学生回答后,向学生解释添括号法则的概念,即在运算时,将同类项相加或相乘时,可以在它们之间添加括号,以提醒我们该先进行哪些数学运算。
步骤二:添括号法则的运算规则1.小组活动:将学生分成小组,每组2-3人,在黑板或白板上给每个组分配一个计算题,要求在运算时运用添括号法则,将同类项相加或相乘。
2.讨论和总结:每组完成后,让学生展示他们的解决方法,进行讨论和总结,引导学生总结出添括号法则的运算规则,如何合理地添括号。
步骤三:添括号法则的应用1.教师篇示范:教师通过一个例子,向学生展示如何应用添括号法则进行数学运算。
2.学生练习:让学生在课本上完成若干道练习题,要求运用添括号法则进行计算。
3.小组比赛:将学生分组,进行小组比赛,每组派出代表完成一道由教师出的题目,并向全班展示解题过程和答案。
步骤四:巩固练习1.达标挑战:在黑板或白板上出一道较难的添括号法则练习题,要求学生逐步推导,找出最终的解答。
2.独立完成:让学生在笔记本上独立完成几道练习题,监督学生独立思考和解决问题的能力。
步骤五:作业布置1.课后作业:布置相应的课后作业,要求学生运用添括号法则进行数学运算。
2.检查与讲评:下节课进行作业的检查和讲评,对错误较多的题目进行解释和指导。
四、教学反思在教学中,本设计通过引入小组合作、示范演练、练习比赛及独立完成作业等多种教学方法,激发学生的学习兴趣并提高他们的思维能力和动手能力。
7.《添括号》教学设计第一篇:7.《添括号》教学设计《添括号》教学设计黔南州都匀市凯口中学陆道军[教学内容] 选自人教版八年级数学上册课本第111页,14.2.2完全平方公式中的添括号。
[教学目标] 1.知识与技能:(1)添括号法则的推导;(2)会运用添括号法则进行多项式变形;(3)理解“去括号”与“添括号”的辩证关系。
2.过程与方法:经历添括号法则的推导与应用过程,进一步发展学生利用已有知识推导新知的思想,体验温故而知新的创造性意识。
3.情感态度与价值观:在灵活应用添括号法则的过程中,激发学生学习数学的兴趣,培养创新能力和探索精神。
[教学重点] 添括号法则的推导与应用。
[教学难点]理解添括号的法则,灵活应用添括号进行多项式的变形,特别是添上“-”号和括号,括到括号里的各项全变号。
[教学方法]探究与讲练相结合的方法。
[学具准备]ppt课件 [课时分配]一课时。
[教学过程]1创设情境,导入新课1.1 提问去括号法则 1.2 练习去括号:(1)a+(b-c);(2)a+(-b-c);(3)a-(-b+c);(4)a-(b-c).解:(1)a+(b-c)=a+b-c(2)a+(-b-c)=a-b-c(3)a-(-b+c)=a+b-c(4)a-(b-c)=a-b+c 把以上式子反过来写,观察从左到右的变形,你发现了什么?a+b-c=a+(b-c)①a-b-c=a+(-b-c)②a+b-c=a-(-b+c)③a-b+c=a-(b-c)④是添了括号,下面我们来讲新的知识添括号。
2 探究添括号法则2.1 添括号有什么规律?2.1.1 观察上面①——④四个式了,等号左右两边对应的项,从左到右哪些项没变,哪些项改变?第1 四个式了中,括号外的项的字母和符号没有改变;第2 ①②两个式了中,括号内的两项的字母和符号没有改变;为什么?因为添的是“+()”第3 ③④两个式了中,括号内的两项的字母没有改变,但符号改变;为什么?因为添的是“-()”2.1.2 概括以上三点,我们得到添括号的法则:(1)添括号时,如果括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号时,如果括号前面是“-”号,括到括号里的各项都改变符号。
乘法公式——添括号
教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.
教学过程:
一、提出问题,学生自学
问题:根据乘方的定义,我们知道:a2=a•a,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2 = (p+1)(p+1) = _______;(m+2)2 = _______;
(2)(p−1)2 = (p−1)(p−1) = _______;(m−2)2 = _______;
学生讨论,教师归纳,得出结果:
(1) (p+1)2 = (p+1)(p+1) = p2+2p+1
(m+2)2 = (m+2)(m+2) = m2+ 4m+4
(2) (p−1)2 = (p−1)(p−1) = p2−2p+1
(m−2)2 = (m −2)(m−2) = m2− 4m+4
分析推广:结果中有两个数的平方和,而2p=2•p•1,4m=2•m•2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.
推广:计算(a+b)2 = __________;(a−b)2 = __________.
得到公式,分析公式
结论:(a+b)2=a2+2ab+b2 (a−b)2=a2−2ab+b2
即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
二、几何分析:
你能根据图(1)和图(2)的面积说明完全平方公式吗?
用科技让复杂的世界变简单
图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a 2、ab 、ab 、b 2,因此,整个面积为
a 2+ab+ab+
b 2 = a 2+2ab+b 2,即说明(a+b)2 = a 2+2ab+b 2.
类似地可由图(2)说明(a −b)2 = a 2−2ab+b 2.
三、例题: 例1.应用完全平方公式计算: (1)( 4m+n)2 (2)(y −21)2 (3)(−a −b)2 (4)(b −a)2 解答:(1)( 4m+n)2 = 16m 2+8mn+n 2 (2) (y −21)2 = y 2−y+41 (3) (−a −b)2 = a 2+2ab+b 2
(4) (b −a)2 = b 2−2ba+a 2
例2.运用完全平方公式计算:
(1)1022 (2)992 解答:(1)1022 = (100+2)2 = 10000+400+4 = 10404 (2)992 = (100−1)2 = 10000−200+1 = 9801
四、添括号法则在公式里的运用
问题:在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,
把另外一个多项式看作另外一个整体,例如:(a+b+c)(a −b+c)和(a+b+c)2,这就需
要在式子里添加括号;那么如何加括号呢?它有什么法则呢?它与去括号有何关
系呢?
学生回顾去括号法则,在去括号时:a+(b+c) = a+b+c ,a −(b+c) = a −b −c 反过来,就得到了添括号法则:a+b+c = a+(b+c),a −b −c = a −(b+c) 理解法则:如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变. 总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,•所以我们可以用去括号法则验证所添括号后
的代数式是否正确.
五、小结:
1.完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.
2.添括号法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算,灵活运用公式进行运算.。