几个特殊的代数系统 6.1
- 格式:ppt
- 大小:884.00 KB
- 文档页数:55
第六章几个典型的代数系统本章讨论几类重要的代数结构:半群、群、环、域、格与布尔代数等.我们先讨论最简单的半群.6.1 半群定义 6.1称代数结构<S,*>为半群(semigroups),如果*运算满足结合律.当半群<S,*>含有关于*运算的么元,则称它为独异点(monoid),或含么半群.例6.1 <I+,+>,<N,·>,<∑*,并置>都是半群,后两个又是独异点.半群及独异点的下列性质是明显的.定理6.1设<S,*>为一半群,那么(1)<S,*>的任一子代数都是半群,称为<S,*>的子半群.(2)若独异点<S,*,e>的子代数含有么元e,那么它必为一独异点,称为<S,*, e>的子独异点.证明简单,不赘述.定理6.2设<S,*>,<S’,*’>是半群,h为S到S’的同态,这时称h为半群同态.对半群同态有(1)同态象<h(S),*’>为一半群.(2)当<S,*>为独异点时,则<h(S),*’>为一独异点.定理6.3设<S,*>为一半群,那么(1)<S S,○ >为一半群,这里S S为S上所有一元函数的集合,○为函数的合成运算.(2)存在S到S S的半群同态.证(l)是显然的.为证(2)定义函数h:S→S S:对任意a∈Sh(a)= f af a:S→S 定义如下: 对任意x∈S,f a(x)= a*x现证h为一同态.对任何元素a,b∈S.h(a*b)=f a*b (l1-1)而对任何x∈S,f a*b(x)= a*b*x = f a(f b(x))= f a○f b (x)故f a*b = f a○f b ,由此及式(l1-1)即得h(a*b)= f a*b = f a○f b =h(a)○h(b)本定理称半群表示定理。
第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。
画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。
注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。
(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。
先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。
利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。
由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。
关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。
(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。
直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。
可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。
3.群在其它方面的应用:如编码理论、计算机等。
一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。
1代数系统1. 定义定义1.1 设A 是集合, 12,,,n f f f 是A 上的运算,则称12(,,,,)n A f f f 是集合A 上的代数系统(algebra system ),简称代数(algebra )。
根据其中的运算定律可将代数系统划分为若干不同的类型。
由某一类代数的基本运算定律可以推出一些隐患的普遍定律,即任何满足基本定律的代数系统一定满足这些推出的定律。
2. 半群半群是最简单的代数系统,其定义如下。
定义 2.1 在一个非空集合上定义一个满足结合律的二元运算,则二者构成半群(semi-group )。
带单位元的半群称为幺半群(monoid )或者独异点。
例2.2字符串集合与字符串的连接运算构成半群,并且是幺半群,其中空串是连接运算的单位元。
3. 群定义3.1 若幺半群中的每个元素都有逆元,则称该幺半群为群(group )。
例3.2 整数集合与加法构成一个群,称为整数加法群。
4. 置换群定义4.1 集合{1,2,…,n}上的双射称为n-元置换(permutation ,也译为“排列”),记为二行矩阵。
12343241⎛⎫ ⎪⎝⎭定义4.2 n-阶轮换:简记为行向量( )。
2-阶轮换称为对换。
定理4.3(置换的分解)置换可唯一地分解为若干次不相交的轮换的复合。
此外, 置换可以分解为若干次对换的复合。
置换的奇偶性:若置换可分解为奇数次对换,则称之为奇置换,否则称为偶置换。
定理4.4集合{1,2,…,n}上的所有双射与复合运算构成一个群,称为置换群。
证明:请读者尝试完成该证明。
证毕5.环和域略。
6.格定义6.1(格的第二种定义)设L是非空集合,∨和∧是L上的二元运算。
若下列四条定律成立,则称代数系统(,,)L∨∧为格:交换律、结合律、幂等律、吸收律。
注:格的第一种定义和第二种定义是等价的,即可相互构造。
定义6.2设(,,)L∨∧是格。
(1)有界格:若L有最大上界和最小下界,则称为有界格(bounded lattice),记为(,,,0,1)L∨∧,其中0,1分别表示最大上界和最小下界。