《离散数学》几个典型的代数系统-1(群)讲解
- 格式:ppt
- 大小:369.00 KB
- 文档页数:40
第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。
画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。
注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。
(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。
先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。
利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。
由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。
关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。
(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。
直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。
可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。
3.群在其它方面的应用:如编码理论、计算机等。
一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。
离散数学代数结构部分离散数学是数学的一个分支,主要研究离散的、分离的、离散化的对象和结构。
其中代数结构是离散数学的一个重要部分,涉及到一些常见的代数结构,如群、环和域等。
下面将从群、环和域三个方面展开,对离散数学中的代数结构进行详细介绍。
一、群群是离散数学中的一个基本代数结构,它由三个主要部分组成:集合、运算和满足一定性质的公理。
具体地,一个群G是一个非空集合,也即G={a,b,c,...},其中的元素a、b、c等叫做群的元素。
除此之外,群还具有一个二元运算,记作"·",满足以下四个公理:1.封闭性公理:对于群的任意两个元素a、b,它们的乘积c=a·b仍然属于G,即c∈G。
2.结合律公理:对于群的任意三个元素a、b、c,(a·b)·c=a·(b·c)。
3.单位元公理:群中存在一个特殊的元素e,称为单位元,满足对于任意元素a,有a·e=e·a=a。
4.逆元公理:对于群中任意元素a,存在一个元素b,使得a·b=b·a=e,其中e是群的单位元。
群结构的研究对于解决各类数学问题具有重要意义。
例如,在密码学中,通信双方使用群的运算来实现加密和解密的功能。
二、环环是另一个重要的代数结构,在离散数学中有广泛的应用。
一个环R由一个非空集合以及两个满足一定条件的二元运算分别组成。
对于一个环R={G,+,·},其中G是一个非空集合,"+"和"·"分别是R上的两个二元运算,满足以下四个公理:1.集合G关于"+"构成一个阿贝尔群,即对于任意的a、b、c∈G,满足以下性质:(a+b)+c=a+(b+c),存在单位元0,对于任意元素a,有a+0=0+a=a,对于任意元素a,存在一个元素-b,使得a+(-b)=-b+a=0,且满足交换律性质:a+b=b+a。
离散数学代数系统中的群与域知识梳理离散数学是研究不连续量的数学分支,而代数系统是离散数学的基础概念之一。
在代数系统中,群与域是两个重要的概念。
本文将对离散数学代数系统中的群与域的相关知识进行梳理。
一、群的定义及性质群是代数系统中一种基本的代数结构,它是一个集合与一个二元运算的组合,满足四个条件:封闭性、结合律、单位元和逆元。
1.1 封闭性在群中的任意两个元素进行运算后,结果仍然属于这个群。
即对于群 G 中任意的 a、b,有 a * b ∈ G。
1.2 结合律在群中进行运算的结果不受运算元素的顺序影响。
即对于群 G 中任意的 a、b、c,有 (a * b) * c = a * (b * c)。
1.3 单位元群中存在一个特殊元素,称为单位元,它与群中的任意元素进行运算后得到这个元素本身。
即对于群 G 中任意的 a,有 a * e = e * a = a,其中 e 是群 G 的单位元。
1.4 逆元对于群 G 中的每个元素 a,群中存在一个元素 b,使得 a * b = b * a = e,其中 e 是群 G 的单位元,并且称元素 b 是元素 a 的逆元,记作 b = a^(-1)。
二、群的例子2.1 整数环(Z,+)整数环是一个群,其中的运算为加法。
整数环满足群的四个条件:封闭性、结合律、单位元和逆元。
例如,对于整数环中的任意两个整数 a、b,其和仍然为整数,满足封闭性;整数的加法满足结合律;0 是整数环的单位元,对于任意整数 a,有 a + 0 = 0 + a = a;对于任意整数 a,存在一个整数 -a,使得 a + (-a) = (-a) + a = 0。
2.2 二进制群(Zn,⊕)二进制群是一个有限集合,其中的运算为模 n 的加法(⊕)。
二进制群也满足群的四个条件:封闭性、结合律、单位元和逆元。
例如,对于二进制群中的任意两个元素 a、b,其模 n 的和仍然在这个群中,满足封闭性;模 n 的加法满足结合律;0 是二进制群的单位元,对于任意元素 a,有 a ⊕ 0 = 0 ⊕ a = a;对于任意元素 a,存在一个元素 b,使得 a ⊕ b = b ⊕ a = 0。