第4章_死亡和死亡率理论、生命表
- 格式:ppt
- 大小:12.77 MB
- 文档页数:130
1.年龄x临界年龄:刚过生日时的瞬间年龄,即刚进入某一年龄组的年龄。
临界年龄的0岁组人口数即为出生人数。
周岁年龄:已满x 岁而尚未满x +1岁的年龄。
确切年龄:精确到日历天数的年龄。
2、尚存人数指已活到x 岁的人数或每一年龄组起点存活的人数。
刚出生的人口。
通常把生命表的出生人数,即0岁人数规定为100000, 也叫生命表基数; 刚进入1岁组的人数;…… ……刚进入最高年龄组的人数。
由尚存人数的特点可见 (x=0,1,2……)可以构成一个数列:…… 。
此数列在生命表中称为生存序列 。
3、表上死亡人数(dx )指已活到x 岁,但未活到x+1岁的人数或在两个年龄组之间死亡的人数。
在生命表上年龄为x 岁的死亡人数(非实际死亡人数)。
:从出生后到尚未满周岁前在此期间死亡的人数;:从满1岁到尚未满2周岁前在此期间死亡的人数;:从满2岁到尚未满3周岁前在此期间死亡的人数;:从满ω-1岁到尚未满ω周岁前在此期间死亡的人数;同样, (x = 0,1,2……)亦可构成一个数列: ……… 。
此数列在生命表中称为死亡序列。
生死平衡等式: 等式左端为同时出生的一批人,等式右端则表示同时出生的这批人,从0岁起开始陆续死去,直到最高年龄ω-1的人全部死去所实现的平衡关系。
4、死亡概率(qx )已经活到x 岁的人们活满x+1岁之前可能出现的死亡比率。
仅仅是死亡概率的理论定义。
由于式中的 与 是根据计算出来的。
因此此式不能从实际数据中计算 ,而只能用于一些理论上的衍生推导。
5、平均生存人年数(Lx )从x 岁到x + n 岁间的生存者所具有的人年数的平均数。
即具有各种生存时间的人数与对应时间的乘积。
是一个把人数和时间联系起来进行研究的一个复合计量单位的指标。
反映人口寿命长度的一般水平。
假定死亡在年龄x 与x +1间发生是均匀分布的(生命初始的几个年龄除外),具体方法有: 0l 1l 1-ωl x l ,,,210l l l 1-ωl 0d 1d 2d 1-ωd x d,,,210d d d 1-ωd ∑-==100ωx x d l x x x l d q =x l x d xx x m m q +=2200111111113,044,1234224,52,12x x x x x x x x L l l x l l d d L x l l L x l L x ωωω++-+--=+=+-=+=+=≥==-,,,生命表的元素及定义6、平均生存总人年数(Tx )是生存人年数的累计数,也就是对生存人年数作累计求和。
生命表函数及计算通过生命表可以得到任意年龄的人在任何期限内的生存概率、死亡概率等相关数据。
以下介绍生命表中揭示的那些栏目所代表的函数。
1、年龄区间[x,x+1][x,x+1]表示x到x+1岁的年龄区间,除最后一个年龄区间(如:89以上)为开区间以外,其余每一个区间都有两个确定的年龄值来定义。
通常,最后一个年龄区间的起点为ω,半开区间[ω,+∞]。
2、生存人数l x设正好活到某一确切年龄x岁的生存人数以l x表示生命表的基础是生存人数,它表示在一封闭区域一定数量的人口集团随着时间的推移因死亡而逐渐减少的人口生存状态。
生存人数l x表示正好活到某一确切整数年龄x岁的人数。
在人的生命表中,作为起点的出生人数l0称为生命表的基数,研究中可以任意取值,但为方便,一般设为100 000人。
3、死亡人数d xd x为年龄区间[x,x+1]内死去的人口数。
dx是生命表上年龄区间[x,x+1]内的死亡数,不同于实际人口死亡数。
根据定义可知l x+1=l x-d x x=0,1,……ω (7.23)4、死亡概率q xq x表示存活到确切年龄x岁的人在到达x+1岁前死亡的概率。
以x至x+1的死亡人数d z占x岁存活人数l x的比例表示。
q x=d z/l x, x=0,1,……ω (7.24) q x这一指标是计算生命表的基础,在已知q x后,就可以依生命表基数l0由公式(7.1)和(7.2)计算出各年龄的存活人数l x和死亡人数d z。
l x+1=(1-q x)*l x , d z+1= q x*l x5、生存人年数L xx岁的人平均生存人年数L x是指年龄区间[x,x+1]的所有人在该区间内的存活年数,即活到确切年龄x岁的人群l z在到达x+1岁前平均存活的人年数。
人年是表示人均存活的符合单位,一人年表示一个人存活了一年。
把生存人数l x看作是在区间[t,t+1]内连续变化的函数,以此为基础的生存人年数L x的计算公式为:L x=1tx ttl dt++⎰ x=0,1……ω-1 (7.25)在死亡均匀分布(UDD)假设下,即我们假设l x曲线从x到x+1间是条直线那么,L x的计算公式可以写为:L x =(l x +l x+1)/2又根据公式(7.23)得:L x =(l x -d x +l x )/2=l x -d x /2 (7.26)注意到死亡均匀假设与l x 从0到ω是线性的假设不同,它仅在每一年年龄上假设是线性的,因此是l x 的比较精确的描述。