特高频局部放电检测技术知识讲解
- 格式:ppt
- 大小:2.14 MB
- 文档页数:48
特高频局部放电检测技术知识讲解电力设备的局部放电是一种常见的电气现象,它预示着设备的绝缘状况可能出现问题。
特高频局部放电检测技术是一种先进的检测技术,能够有效地检测和识别电力设备的局部放电。
本文将详细介绍特高频局部放电检测技术的原理、应用及优势。
一、特高频局部放电检测技术原理特高频局部放电检测技术主要利用局部放电产生的电磁波进行检测。
当电力设备发生局部放电时,放电产生的电流会激发出电磁波,这些电磁波的频率通常在数吉赫兹到数百吉赫兹之间。
特高频局部放电检测设备能够捕捉到这些特高频电磁波,并对其进行处理和分析。
二、特高频局部放电检测技术的应用特高频局部放电检测技术在电力设备检测中具有广泛的应用。
例如,它可以用于变压器、电缆、断路器等电力设备的检测。
通过对特高频电磁波的分析,可以判断出设备的绝缘状况,发现潜在的故障,从而预防设备故障的发生。
三、特高频局部放电检测技术的优势特高频局部放电检测技术相比传统的检测方法具有以下优势:1、高灵敏度:特高频局部放电检测技术对局部放电产生的电磁波非常敏感,可以检测到非常微弱的放电信号,从而能够发现潜在的设备故障。
2、宽频带:特高频局部放电检测设备具有宽频带的接收能力,可以接收到的电磁波频率范围很广,从而能够获得更全面的设备信息。
3、抗干扰能力强:特高频局部放电检测技术对噪声的抑制能力较强,可以有效地避免干扰信号对检测结果的影响。
4、非接触式检测:特高频局部放电检测技术可以采用非接触式的方式进行检测,无需接触设备,从而不会对设备的正常运行产生影响。
四、结论特高频局部放电检测技术是一种先进的电力设备检测技术,具有高灵敏度、宽频带、抗干扰能力强和非接触式检测等优势。
通过对电力设备的特高频电磁波进行检测和分析,可以有效地发现潜在的设备故障,预防设备故障的发生。
在未来的电力设备检测中,特高频局部放电检测技术将会发挥越来越重要的作用。
随着电力系统的不断发展,人们对电力设备的安全与稳定性要求越来越高。
超声波与特高频方法下的GIS局部放电检测技术分析GIS(气体绝缘开关设备)局部放电是GIS设备在使用过程中常见的故障形式之一,也是影响其安全运行的重要因素。
因此,对GIS局部放电进行准确的检测与分析,对设备性能和安全运行具有重要意义。
目前,超声波与特高频方法是常用的GIS局部放电检测技术。
本文将对这两种方法进行详细分析和比较。
超声波检测是通过变压器绝缘油中产生的声波来检测局部放电。
在GIS设备中,如果有局部放电现象,会产生高频的声波信号。
超声波检测系统会把这些声波信号收集回来,并分析处理,以判断设备是否存在局部放电现象。
超声波检测方法有以下几个优点。
首先,可以实时监测设备的局部放电情况。
其次,可以对设备内部各部位进行检测,包括各个开关组件和连接件。
此外,超声波检测无需对设备进行特殊处理,可以在设备正常运行时进行检测。
但是,超声波检测技术也存在一些局限性。
例如,它无法定量检测局部放电程度,无法准确定位故障点。
特高频方法是利用GIS局部放电产生的特高频信号来进行检测与分析。
特高频信号是指频率大于300MHz的电磁波信号。
特高频方法的检测原理是,当局部放电在GIS设备内发生时,会产生电磁波信号,这些信号通过空气介质传播到设备表面,然后由特高频探头接收。
特高频方法的优点是可以准确定位局部放电点,它的探头可以检测到信号的传播路径和强度,从而对设备的局部放电情况进行分析。
此外,特高频方法检测的信号频率高,检测的灵敏度较高,能够检测到微弱的局部放电信号。
但是,特高频方法的应用还需要一些设备和技术条件,例如特高频探头和信号分析仪。
综上所述,超声波与特高频方法是常用的GIS局部放电检测技术。
两种方法在局部放电检测方面都有一定的优点和局限性。
超声波检测可以实时监测设备的局部放电情况,并对设备内部各个部位进行检测,但无法定量检测和定位故障点。
特高频方法可以准确定位故障点,检测灵敏度高,但需要一定的设备和技术条件。
因此,在GIS局部放电检测中,可以结合使用超声波和特高频方法,以获得更准确和全面的检测结果。
GIS局部放电特高频检测技术的研究一、概述随着电力系统的不断发展,气体绝缘组合电器(GIS)因其优异的绝缘性能和紧凑的结构设计,在电力传输和分配中得到了广泛的应用。
GIS设备在运行过程中,由于设计制造缺陷、安装过程中的不当操作以及运行环境的恶化等原因,可能会产生局部放电现象。
局部放电是GIS设备绝缘性能恶化的重要征兆,长期存在将严重影响设备的正常运行,甚至导致整个电力系统的故障。
对GIS局部放电的检测与监测显得尤为重要。
特高频(UHF)检测技术作为一种新型的局部放电检测手段,因其具有抗干扰能力强、灵敏度高等优点,近年来在GIS局部放电检测中得到了广泛的应用。
特高频检测技术通过接收GIS设备内部局部放电产生的特高频电磁波信号,实现对局部放电的有效检测和定位。
该技术不仅可以用于设备的预防性维护,还可以在设备运行过程中进行实时监测,及时发现并处理潜在的绝缘缺陷,从而提高GIS设备的运行可靠性和电力系统的稳定性。
本文旨在深入研究GIS局部放电特高频检测技术,分析其检测原理、方法及应用现状,并探讨该技术在GIS局部放电检测和定位中的优化与改进。
通过本文的研究,期望能为GIS设备的故障诊断和预防性维护提供更为准确、有效的技术手段,为电力系统的安全稳定运行提供有力保障。
1. GIS(气体绝缘金属封闭开关设备)的重要性及其在电力系统中的应用GIS,即气体绝缘金属封闭开关设备,是现代电力系统中不可或缺的关键组成部分。
其重要性不仅体现在提高电力系统的运行效率和稳定性上,更在于对电力输送和分配过程的安全保障。
GIS设备以其独特的结构和性能优势,在电力系统中发挥着日益重要的作用。
GIS设备具有出色的绝缘性能。
相比于传统的空气绝缘开关设备,GIS采用气体绝缘,大大提高了设备的绝缘强度,使其能够承受更高的电压等级,满足大规模、远距离电力输送的需求。
GIS 设备结构紧凑、占地面积小,有效解决了传统开关设备占地面积大、空间利用率低的问题,特别适用于城市电网和工矿企业等空间有限的场所。
目录一、系统组成 (1)二、特点及功能用途 (1)三、检测原理 (2)四、软件功能: (2)1.统计谱图计算 (2)2. 历史趋势谱图计算与查看 (3)3.放电类型分析 (4)五、技术指标 (6)六、部分应用(固定式) (6)PDM-G01型便携式GIS局部放电特高频检测仪GIS是电力系统的重要设备,是保证供电可靠性的基础,一旦发生故障必将引起局部以致全部地区停电。
大型电力GIS的故障可能造成的经济损失巨大。
甚至由于故障的突发性会因爆炸造成人员的伤亡。
随着经济的发展,社会对供电可靠性的要求越来越高。
而导致设备故障的主要原因是其绝缘性能的劣化。
局部放电是发生绝缘故障的重要征兆和表现形式[1],同时也是检测和评价绝缘状况的重要手段。
对运行中的电力GIS的绝缘状况进行检测是解决绝缘性能劣化问题最有效的手段。
由华北电力大学(北京)与北京沛森电气有限公司联合研制的局部放电特高频检测仪,整体水平达到国际领先,灵敏度高,抗干扰强,定位准确,使用方便。
突破性地解决了在现场无法检测运行中GIS设备内部局部放电的难题。
适用于各电压等级GIS设备的在线监测、检查、故障点定位,可有效预防电力系统的突发性事故,并可为状态检修提供科学的数据依据;也可用于GIS的出厂局部放电试验检测和现场验收检测。
一、系统组成由传感器、宽带放大器、高频电缆、机械附件、工控机(数字示波器)组成二、特点及功能用途●及时发现设备内部的局部放电隐患,保证系统安全,为设备状态检修提供依据。
●实现局部放电故障点定位●实现对被检测设备局部放电历史趋势的观察(见软件功能部分)●放电模式识别及故障类型诊断●基于特高频(UHF)法体外监测,抗干扰能力强,灵敏度极高(不低于20pC)●装置小巧,适于在线安装和带电检测,携带方便,维护简单。
三、检测原理本产品是基于特高频(UHF)法体外检测GIS内部局部放电的原理:特高频探头主要接收GIS内部由局部放电辐射出的特高频波段的电磁波。
特高频传感器监测变压器局部放电的探索特高频传感器监测变压器局部放电的探索变压器是电力系统中非常重要的设备之一,用于改变电压的大小。
然而,随着变压器的使用时间增长,可能会出现局部放电现象,这会对变压器的性能和寿命产生负面影响。
因此,使用特高频传感器来监测变压器的局部放电情况至关重要。
第一步是选择适当的特高频传感器。
特高频传感器通常可以侦测到高频范围内的电磁辐射。
由于局部放电产生的放电频率通常在特高频范围内,因此特高频传感器非常适合监测变压器的局部放电。
第二步是安装传感器。
传感器可以安装在变压器的关键位置,例如绕组和泄漏点。
这些位置是局部放电最有可能发生的地方。
通过在这些位置安装传感器,可以及时监测到局部放电的发生,并采取相应的措施。
第三步是连接传感器到监测系统。
传感器可以通过电缆连接到监测系统,以传输监测数据。
监测系统可以实时分析传感器收集到的数据,并提供警报和报告,以指示局部放电的情况。
第四步是设定监测系统的参数。
监测系统应根据变压器的特点和要求进行适当的参数设置。
例如,可以设定警报阈值,当局部放电超过预设值时,系统将自动发出警报。
第五步是定期检查和维护传感器和监测系统。
传感器和监测系统需要定期检查和维护,以确保其正常工作。
这可以包括清洁传感器,检查电缆连接和校准系统。
最后一步是根据监测数据采取相应的措施。
监测系统提供的数据可以帮助确定局部放电的严重程度和位置。
根据监测数据,可以采取适当的维修和保养措施,以防止局部放电进一步发展,并延长变压器的使用寿命。
总之,通过特高频传感器监测变压器的局部放电是非常重要的。
通过正确选择传感器、安装和连接传感器、设定监测系统参数、定期检查和维护传感器和系统,以及根据监测数据采取相应措施,可以及时发现和处理变压器的局部放电问题。
这将有助于确保变压器的正常运行和延长其使用寿命。
GIS特高频局部放电检测方法总结1.GIS局部放电检测方法概述国内专家研究结果显示1,2:光学检测法、化学检测法、声学检测法、电学检测法共四种方法可以实现GIS局部放电的检测。
但是光学检测法对未知监测点检测难度大,且其灵敏度容易受到环境影响;化学检测法检测时间较长,不能快速检测GIS中局放信号,以上原因严重限制了以上两种方法的应用和普及。
因此,下文将主要针对声学检测法和电学检测法进行对比描述,详见表1.1。
表1.1三种局放检测方法对比从表1.1可以看出,特高频法和超声检测法为当前主流的两种GIS局部放电检测方法。
两种方法不仅适合离线检测,也适用于在线监测系统。
2.特高频法在国内外的应用情况说明国内外有多家企业、研究机构使用特高频法检测GIS、变压器设备总局部放电信号,并完成放电信号类型聚类、分离,故障定位等内容。
其中国外比较有代表性的公司有英国DMS,PSD,omicron等,国内具有代表性的公司包括上海华乘,陕西公众智能等。
国内具有代表性的研究机构包括华北电力,西安交大,清华大学等。
3.特高频法实现方式说明特高频法使用的频段较高——300~1500MHz。
当前的采集系统(ADC)无法覆盖整个频段,从而完成对局放信号的有效采集。
即使采集系统可以对此频段进行有效的采样,但其产生的海量数据给信号处理单元带来巨大挑战。
除此之外,我们主要关心局部放电信号的峰值,放电次数和相位数据,以便完成放电量计算,放电谱图绘制,故障定位等内容。
海量数据中的其他数据都是无用的,即使采集回来也是要被丢弃的。
基于以上原因,在工程实现中,国内外的公司和研究机构通常使用两种方式完成特高频局放信号到低频信号(0~30Mhz)的转换——调频、混频方式和检波方式。
其中DMS公司(峰值检测,没有时域波形),华北电力(李成榕等)的特高频法使用检波方式将特高频信号转换为低频信号;omicron,西安交大(李彦明等),清华大学(刘卫东等)则使用调频、混频方式将高频信号转换为低频信号。
第3章特高频局部放电检测技术第三章特高频局部放电检测技术目录第1节特高频局放检测技术概述 (3)1.1 发展历程 (3)1.2 技术特点 (5)1.2.1 技术优势 (5)1.2.2 局限性 (6)1.2.3 适用范围 (7)1.2.4 技术难点 (7)1.3 应用情况 (9)1.3.1 国外应用情况 (9)1.3.2 国内应用情况 (10)第2节特高频局放检测技术基本原理 (11)2.1 特高频局放电磁波信号基本知识 (11)2.1 GIS内部电磁波的传播特性 (11)2.3 特高频局放检测技术基本原理 (13)2.3 特高频局放检测装置组成及原理 (14)第3节特高频局放检测及诊断方法 (18)3.1 检测方法 (18)3.1.1 操作流程 (18)3.1.2 注意事项 (20)3.2 诊断方法 (21)3.2.1 诊断流程 (21)3.2.2 现场常见干扰及排除方法 (22)3.2.3 放电缺陷类型识别与诊断 (25)3.2.4 放电源定位 (28)3.2.5 局部放电严重程度判定 (29)第4节典型案例分析 (30)4.1 220kV GIS盆式绝缘子内部气隙缺陷检测 (30)4.2 110kV电缆-GIS终端绝缘内部气隙缺陷检测 (32)4.3 220kV GIS内部刀闸放电缺陷检测 (37)参考文献 (43)第1节特高频局放检测技术概述1.1 发展历程电力设备内发生局部放电时的电流脉冲(上升沿为ns级)能在内部激励频率高达数GHz的电磁波,特高频(Ultra High Frequency,UHF)局部放电检测技术就是通过检测这种电磁波信号实现局部放电检测的目的。
特高频法检测频段高(通常为300M~3000MHz),具有抗干扰能力强、检测灵敏度高等优点,可用于电力设备局部放电类缺陷的检测、定位和故障类型识别[1]。
特高频法过去曾被称为“超高频法”。
但是按照中华人民共和国无线电频率划分规定,300MHz~3000MHz频带划分为特高频,因此该检测方法的正式名称为特高频法。