第4章 傅里叶变换与系统的频域分析
- 格式:ppt
- 大小:5.65 MB
- 文档页数:138
第四章.连续时间信号与系统频域分析一.周期信号的频谱分析1. 简谐振荡信号是线性时不变系统的本征信号:()()()()()j tj t j tj y t eh t eh d ee h d ωωτωωτττττ∞∞---∞-∞=*==⋅⎰⎰简谐振荡信号傅里叶变换:()()j H j e h d ωτωττ∞--∞=⎰点 测 法: ()()j t y t e H j ωω=⋅ 2.傅里叶级数和傅里叶变换3.荻里赫勒(Dirichlet )条件(只要满足这个条件信号就可以用傅里叶级数展开)○1()f t 绝对可积,即00()t T t f t dt +<∞⎰○2()f t 的极大值和极小值的数目应有限 ○3()f t 如有间断点,间断点的数目应有限4.周期信号的傅里叶级数5.波形对称性与谐波特性的关系6.周期矩形脉冲信号7.线性时不变系统对周期信号的响应一般周期信号:()jn tnn F ef t ∞Ω=-∞=∑系统的输出 :()()jn tnn F H jn t e y t ∞Ω=-∞Ω=∑ 二.非周期信号的傅里叶变换(备注)二.非周期信号的傅里叶变换1.连续傅里叶变换性质2.常用傅里叶变换对四.无失真传输1.输入信号()f t 与输出信号()f y t 的关系 时域: ()()f d y t kf t t =-频域:()()dj t f Y ke F ωωω-=2.无失真传输系统函数()H ω ()()()d f j t Y H ke F ωωωω-==无失真传输满足的两个条件:○1幅频特性:()H k ω= (k 为非零常数) 在整个频率范围内为非零常数 ○2相频特性:ϕ()d t ωω=- ( 0d t > )在整个频率范围内是过坐标原点的一条斜率为负的直线3. 信号的滤波:通过系统后 ○1产生“预定”失真○2改变一个信号所含频率分量大小 ○3全部滤除某些频率分量 4.理想低通滤波器不存在理由:单位冲击响应信号()t δ是在0t =时刻加入滤波器 的,而输出在0t <时刻就有了,违反了因果律5.连续时间系统实现的准则时 域 特 性 : ()()()h t h t u t =(因果条件) 频 域 特 性 : 2()H d ωω∞-∞<∞⎰佩利-维纳准则(必要条件):22()1H d ωωω∞-∞<∞+⎰五.滤波。
第四章:傅立叶变换和系统的频域一、信号分解为正交函数 (一)、完备正交函数 1正交函数:实正交函数:设φ1(t) φ2(t)是定义在(t 1,t 2)内的两个实函数,若∫φ1(t ),t 2t 1φ2(t)dt =0,则称是函数的正交条件。
若∫φ1(t),t 2t 1φ2*dt =∫φ1*(t),t 2t 1φ2dt =0满足实函数的正交条件,则称φ1(t) φ2(t)在(t1,t 2)内正交。
复函数正交::设φ1(t) φ2(t)是定义在(t 1,t 2)内的两个复函数,若,则称是复函数的共轭条件。
则称φ1(t) φ2(t)在(t 1,t 2)内正交。
2、正交函数集若n 个实函数{φi (t )}(i=1,2,3,…….)在区间(t 1,t 2)内满足实函数正交条件∫φi (t ),t 2t 1φj(t)dt ={0,i ≠jK i ,i =j,则{φi (t )}(i=1,2,3,…….)在(t 1,t 2)内是正交实函数。
≈复正交函数集:若n 个复函数{φi (t )}(i=1,2,3,…….)在区间(t 1,t 2)内满足复函数正交条件∫φi (t ),t 2t 1φj*(t)dt ={0,i ≠jK i ,i =j,则{φi (t )}(i=1,2,3,…….)在(t 1,t 2)内是复正交函数集。
3、完备正交函数集:若正交函数集{φi (t )}(i=1,2,3,…….)之外不存在g t (t )与φi (t )正交,则{φi (t )}(i=1,2,3,…….)是完备正交函数集。
4、完备正交函数集举例: a、三角函数集 b 、复指数函数集 c 、沃尔什函数(二)信号正交分解f (t )≈C 1φ1(t )+ C 2φ2(t )+……..+ C n φn (t )=∑C j n j=1φj (t),求系数C j 1、 求误差的均方值最小:2ε= Cj1t 1−t 2∫f (t )−∑C j n j=1φj (t)t 2t 1二、三角傅里叶级数(周期信号在一个周期内展开)1、满足狄利克雷条件f(t)=a02+∑(a n cos nΩt+b n sin nΩt)∞n=1a0 2=1T∫f(t)dt=f(t)π2−π2(f(t)在一个周期内方均值;直流分量)a n=2T∫f(t)cos nΩt dt,n=0,1,2,…T2−T2b n=2T∫f(t)sin nΩt dt,n=0,1,2,…T2−T22、三角傅里叶级数第二种表示方法:3、f(t)=A02+∑(A n cos(nΩt+φn)∞n=1A n=√a n2+b n2(A0=a)φn=tan−1b na nA02直流分量;(A n cos(nΩt+φn)n次谐波分量三角傅里叶级数的特点:A n和a n是nΩ的偶函数;b n和φn是nΩ的奇函数。
傅里叶变换与频域分析傅里叶变换是一种重要的数学工具,它在信号处理、图像处理、音频处理等领域有着广泛的应用。
通过将一个时域信号转化为频域信号,可以分析信号的频谱分布,从而揭示出信号中隐藏的信息。
本文将探讨傅里叶变换的原理及其在频域分析中的应用。
一、傅里叶变换的原理傅里叶变换是一种线性积分变换,它可以将一个时域连续信号转化为一个频域连续函数。
傅里叶变换的数学表达式如下:F(ω) = ∫f(t)e^(-jωt)dt其中,F(ω)表示频域函数,f(t)表示时域函数,ω表示角频率,j表示虚数单位。
傅里叶变换的原理是将时域信号分解成多个不同频率的正弦和余弦波的叠加。
通过傅里叶变换,我们可以得到信号在频域上的频谱分布,从而可以分析信号中各个频率成分的强弱和相位关系。
二、傅里叶变换的应用1. 信号滤波傅里叶变换可以将信号转化为频域信号,通过对频域信号的滤波操作可以去除信号中的噪声或者选择特定频率范围内的信号成分。
这在图像处理和音频处理中特别有用,可以有效地提取出感兴趣的信息。
2. 频谱分析傅里叶变换可以将信号在频域上展开,通过对频域函数的分析可以得到信号的频谱分布,包括各个频率成分的强弱和相位关系。
这对于研究信号特性、识别信号类型以及分析信号变化趋势非常有帮助。
3. 信号压缩傅里叶变换可以将信号转化为频域信号,通过选择性地保留部分频率成分,可以将信号进行压缩。
这在图像压缩和音频压缩中有着广泛的应用。
4. 信号重建傅里叶变换的逆变换可以将频域信号重新转化为时域信号,从而实现信号的重建。
这对于信号处理和通信领域非常重要。
三、频域分析的步骤频域分析是傅里叶变换在实际应用中的一种常见方式。
频域分析可以通过以下步骤实现:1. 采样信号首先,需要采集并采样原始信号。
采样频率要根据信号的最高频率成分来确定,以避免混叠现象的发生。
2. 进行傅里叶变换将采样的时域信号进行傅里叶变换,得到频域信号。
3. 频谱分析对频域信号进行频谱分析,可以得到信号在频率轴上的频谱分布。
信号与系统傅里叶变换和系统的频域分析首先,我们来介绍傅里叶变换。
傅里叶变换是一种将时间域信号转换为频域信号的数学工具,它可以将一个连续的时间域信号分解为一系列不同频率的正弦和余弦波的叠加。
傅里叶变换可以看作是一种能量谱的测量方法,它告诉我们信号中每个频率成分的能量大小。
傅里叶变换的数学定义是通过积分将一个信号从时间域转换到频域。
对于一个连续时间域信号x(t),它的傅里叶变换X(ω)定义为:X(ω) = ∫[−∞,+∞] x(t) e^(-jωt)dt其中,X(ω)是信号的频域表示,ω是频率,e^(-jωt)是复指数函数。
傅里叶变换将信号x(t)从时间域转换为频域,允许我们分析信号的频谱特性,包括频率成分、幅度和相位等。
傅里叶变换的逆变换可以将频域信号恢复到时间域信号。
对于一个频域信号X(ω),它的逆傅里叶变换x(t)定义为:x(t)=(1/2π)∫[−∞,+∞]X(ω)e^(jωt)dω傅里叶变换在信号与系统领域中有广泛的应用,例如,它可以用于频谱分析、滤波器设计、系统响应分析等。
通过傅里叶变换,我们可以获得关于信号的更多信息,并且可以对信号进行处理和改变。
接下来,我们来介绍系统的频域分析。
在信号与系统理论中,系统通常指的是对输入信号进行处理的一种数学结构。
系统的频域分析是一种用频域工具和方法分析系统行为的技术,它可以帮助我们理解系统对不同频率信号的响应。
系统的频域分析基于系统的传递函数,它将输入信号转换为输出信号的关系表示为一个复数表达式。
传递函数通常表示为H(ω),其中ω是频率。
传递函数描述了系统对不同频率信号的增益和相位响应。
对于一个线性时不变系统,系统的输出可以通过将输入信号与传递函数相乘得到。
这可以用傅里叶变换的性质来实现,因为傅里叶变换将一个输入信号转换为频域中的复数表达式。
将输入信号的傅里叶变换与传递函数的频域表示相乘,然后进行逆傅里叶变换,即可得到系统的输出信号。
系统的频域分析可以提供有关系统频率响应、频率选择性和稳定性等方面的信息。