高中数学绝对值不等式的解法
- 格式:ppt
- 大小:329.50 KB
- 文档页数:26
《绝对值不等式的解法》(第一课时)教学设计一、教学内容解析《绝对值不等式的解法》是选修4-5第一章第三节内容,我们这里讲解第一课时。
该内容是在初中学习了绝对值的概念,学习了一元一次不等式;高中必修1学习了绝对值函数图像的画法,必修5学习了一元二次不等式的基础上展开的。
通过本节课可渗透数形结合、分类讨论、化归与转化等数学思想方法,因此它是本章的重点之一,在整个数学学科中占有重要地位。
解含绝对值不等式问题的基本思想是设法去掉绝对值符号,转化为同解的不含绝对值符号的一般不等式去解.而去绝对值的方法主要有定义法(分类讨论法)、平方法、几何法、图像法等,实际上,这四种方法也是解绝对值不等式问题的基本思路,为下一节学习含有两个绝对值的不等式的解法做好铺垫.而本节的重点是运用绝对值的几何意义去掉绝对值符号,转化为不含绝对值的不等式求解,并从中总结规律,形成解绝对值不等式的规律公式及口诀。
本节课在求解过程中也是对集合知识的应用和巩固,同时,为以后不等式的学习打下了基础,对培养学生分析问题、解决问题的能力、理解能力、思维的灵活性有很大的帮助,同时能使学生养成多角度认识研究事物的习惯;并通过不等式变换的等价性培养思维的可容性。
二、教学目标设置【教学目标】1、知识与技能:使学生熟练掌握()()()0>≤≥aaxfaxf与型不等式的解法;2、过程与方法:培养学生观察、分析、归纳、概括的能力,渗透数形结合、分类讨论、转化与化归等数学思想方法;培养学生养成多角度认识研究事物的习惯;并通过不等式变换的等价性培养思维的可容性。
3、情感态度价值观:向学生渗透“具体-抽象-具体”辩证唯物主义的认识论观点,使学生形成良好的个性品质。
感悟形与数不同的数学形态间的和谐统一美。
【教学重点与难点】重点:()()()0>≤≥aaxfaxf与型不等式的解法;难点:利用绝对值的几何意义解绝对值不等式。
三、学生学情分析学生在初中已经学过绝对值的定义,在高中必修1中,也会画简单的绝对值函数的图像,也接触过两边平方的方法。
绝对值不等式的解法1.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a 与|x|<a 的解集不等式a>0 a=0 a<0|x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:(1)|ax+b|≤c⇔﹣c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c 或ax+b≤﹣c;(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m 或|x﹣a|+|x﹣b|<m (m 为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c 的解就是数轴上到A(a),B(b)两点的距离之和不小于c 的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0 且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0 且|a|≥|b|.。
高中数学学习材料(灿若寒星 精心整理制作)高二年级(下)数学学案绝对值不等式的解法制作人:岳双珊 审核人:张艳芬 时间 2013.03一.基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)、公式法:即利用a x >与a x <的解集求解。
主要知识:1.绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离。
2.a x >与a x <型的不等式的解法。
当0>a 时,不等式⇔>a x {}a x a x x -<>或,;不等式⇔<a x {}a x a x <<-; 当0<a 时,不等式⇔>a x {}R x x ∈;不等式⇔<a x ∅. 3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
4.关于绝对值不等式的常见类型有下列的同解变形 (1)()()()()();f x g x g x f x g x ≤⇔-≤≤ (2)()()()(),()()f x g x f x g x f x g x ≥⇔≤-≥或 (3)22()()()().f x g x f x g x ≤⇔≤(4)设0b a >>,则不等式()a f x b ≤<⇔()b f x a -<≤-或()a f x b ≤<(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。
例如:解不等式22xxx x >++.(三)、平方法:解()()f x g x >型不等式。
例如:解不等式123x x ->-.二.分类讨论法(零点分段法):即通过合理分类去绝对值后再求解。
绝对值不等式一、绝对值三角不等式1.定理1:如果a ,b 是实数,则|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.2.定理2:如果a ,b ,c 是实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.二、绝对值不等式的解法1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式a >0a =0a <0|x |<a-a <x <a ∅∅|x |>a x >a 或x <-a x ≠0R(1)|a x +b|≤c ⇔-c ≤a x +b ≤c ;(2)|a x +b|≥c ⇔a x +b ≥c 或a x +b ≤-c .3.|x -a |+|x -b|≥c(c>0)和|x -a |+|x -b |≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式a >0a =0a <0|x |<a -a <x <a ∅∅|x |>a x >a 或x <-a x ≠0R(1)|a x +b|≤c ⇔-c ≤ax +b ≤c ;(2)|a x +b|≥c ⇔ax +b ≥c 或ax +b ≤-c .3.|x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.解:原不等式可化为2x -1≥0,x +(2x -1)<3或2x -1<0,x -(2x -1)<3.解得12≤x <43或-2<x <12.解:(1)证明:f (x )=|x -2|-|x -5|=-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.解:由题知,|x -1|+|x -2|≤|a -b |+|a +b ||a |恒成立,故|x -1|+|x -2|不大于|a -b |+|a +b ||a |的最小值.∵|a +b |+|a -b |≥|a +b +a -b |=2|a |,当且仅当(a +b )(a -b )≥0时取等号,∴|a -b |+|a +b ||a |的最小值等于2.∴x 的取值范围即为不等式|x -1|+|x -2|≤2的解.解不等式得12≤x ≤52.式|a|-|b|≤|a -b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x -a|+|x -b|≥c 表示到数轴上点A(a),B(b)距离之和大于或等于c 的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,则a 的取值范围是________.解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a≤3.例5:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________.解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log3(|x -4|+|x +5|)≥2所以要使不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x ,y)(其中x ,y ∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x +2|+|y -2|+(|x -3|+|y -1|)+(|x -3|+|y -4|)+(|x +2|+|y -3|)+(|x -4|+|y -5|)+(|x -6|+|y -6|)=[(|x +2|+|x -6|)+(|x +2|+|x -4|)+2|x -3|]+[|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|]取得最小值的格点(x ,y)(其中x ,y ∈Z).注意到[(|x +2|+|x -6|)+(|x +2|+|x -4|)+2|x -3|]≥|(x +2)-(x -6)|+|(x +2)-(x -4)|+0=14,当且仅当x =3取等号;|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|=(|y -1|+|y -6|)+(|y -2|+|y -5|+(|y -3|+|y -4|)≥|(y -1)-(y -6)|+|(y -2)-(y -5)|+|(y -3)-(y -4)|=9,当且仅当y =3或y =4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y =|x -a|+|x -b|或y =|x +a|-|x -b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x -a|+3x ,其中a>0.(1)当a =1时,求不等式f(x)≥3x +2的解集;(2)若不等式f(x)≤0的解:(1)当a =1时f(x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1.故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2)由f(x)≤0得|x -a|+3x≤0.此不等式化为不等式组x ≥a ,x -a +3x ≤0,或x ≤a ,a -x +3x ≤0,即x ≥a ,x ≤a 4,或x ≤a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a 2}.由题设可得-a 2=-1,故a =2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。
1.2.2 绝对值不等式的解法课堂导学三点剖析一、绝对值不等式的典型类型和方法(一) 【例1】 解下列不等式: (1)1<|x+2|<5; (2)|3-x|+|x+4|>8.解析:(1)法一:原不等式⇔⎩⎨⎧<<--<->⇔⎩⎨⎧<+<->+⇔⎩⎨⎧<+>+.37,31525125|2|1|2|x x x x x x x 或 故原不等式的解集为{x|-1<x<3或-7<x<-3}.法二:原不等式⎩⎨⎧<--<<+⎩⎨⎧<+<≥+⇔521,02521,02x x x x 或, ⇔⎩⎨⎧-<<--<⎩⎨⎧<<--≥⇔37,231,2x x x x 或-1<x<3或-7<x<-3.∴原不等式的解集为{x|-1<x<3或-7<x<3}.(2)法一:原不等式⎩⎨⎧>++-<<-⎩⎨⎧>---≤⇔,843,34843,4x x x x x x 或⎩⎨⎧>≥⎩⎨⎧><<-⎩⎨⎧>---≤⇔⎩⎨⎧>++-≥.72,387,34821,4843,3x x x x x x x x 或或或 ∴x>27或x<29-. ∴原不等式的解集为{x|x<29-或x>27}.法二:将原不等式转化为|x-3|+|x+4|-8>0,构造函数y=|x-3|+|x+4|-8,即y=⎪⎩⎪⎨⎧≥-<<---≤--.3,72,34,1,492x x x x作出函数的图象如图.从图象可知当x>27或x<29-时,y>0,故原不等式的解集为{x|x>27或x<29-}. 温馨提示在本例中主要利用了绝对值的概念,|x|<a(或|x|>a)的解集以及数形结合的方法,这些方法都是解绝对值不等式的典型方法. 各个击破 类题演练1 解下列不等式:(1)|432-x x|≤1; (2)|x+3|-|2x-1|>2x+1.解析:(1)原不等式⎩⎨⎧≥+-±≠⇔⎪⎩⎪⎨⎧-≤≠-⇔016172)4(904242222x x x x x x ⇔⎩⎨⎧≥≤±≠⇔161222x x x 或-1≤x≤1或x≤-4或x≥4. 故原不等式的解集为{x|-1≤x≤1或x≤-4或x≥4}. (2)由x+3=0,得x 1=-3, 由2x-1=0,得x 2=21. ①当x<-3时,不等式化为x-4>2x+1,解得x>10,而x<-3,故此时无解; ②当-3≤x<21时,不等式化为3x+2>2x +1,解得x>52-,这时不等式的解为52-<x<21;③当x≥21时,不等式化为-x+4>2x +1,即x<2,这时不等式的解为21≤x<2.综合上述,原不等式的解集为{x|52-<x<2}.变式提升1(1)解不等式|x 2-5x+5|<1.解析:不等式可化为-1<x 2-5x+5<1,即⎪⎩⎪⎨⎧->+-<+-.155,15522x x x x解之,得1<x<2或3<x<4.所以原不等式的解集为{x|1<x<2或3<x<4}.(2)求使不等式|x-4|+|x-3|<a 有解的a 的取值范围. 解法一:将数轴分为(-∞,3),[3,4],(4,+∞)三个区间. 当x<3时,得(4-x)+(3-x)<a,x>27a -有解条件为27a-<3,即a>1; 当3≤x≤4,得(4-x)+(x-3)<a,即a>1; 当x>4时,得(x-4)+(x-3)<a,则x<27+a有解条件为27+a >4.∴a>1. 以上三种情况中任何一个均可满足题目要求,故是它们的并集,即仍为a>1.解法二:设数x 、3、4在数轴上对应的点分别为P 、A 、B,由绝对值的几何意义,原不等式即求|PA|+|PB|<a 成立.因为|AB|=1,故数轴上任一点到A 、B 距离之和大于(等于)1,即|x-4|+|x-3|≥1,故当a>1时,|x-4|+|x-3|<a 有解.另外,本题还可利用绝对值不等式性质求函数的最值方法处理: ∵|x -4|+|x-3|=|x-4|+|3-x| ≥|x -4+3-x|=1,∴a 的取值范围是a>1.二、绝对值不等式的典型类型和方法(二)【例2】 解不等式|x 2-9|≤x+3.解析:方法一:原不等式⎪⎩⎪⎨⎧+≤-≥-⇔39,0922x x x ⎪⎩⎪⎨⎧+≤-≥-39,0922x x x 或 由①得x=-3或3≤x≤4,由②得2≤x<3,∴原不等式解集是{x|2≤x≤4或x=-3}.方法二:原不等式⎪⎩⎪⎨⎧≤≤--≤-≥⇔⎩⎨⎧+≤-≤+-≥+⇔433339)3(032x x x x x x x x ⇔或2≤x≤4. ∴原不等式的解集为{x|x=-3或2≤x≤4}. 温馨提示对于|f(x)|≤g(x)型的不等式,通常有两种思路,一种是利用绝对值的意义,将其转化为f(x)≥0,⎩⎨⎧≤-<⎩⎨⎧≤≥).()(,0)()()(,0)(x g x f x f x g x f x f 或 另一种则是转化为⎩⎨⎧≤≤-≥)()()(,0)(x g x f x g x g 来求.当然也可直接转化为-g(x)≤f(x)≤g(x)来解(为什么?请同学们思考). 类题演练2解不等式|2x-1|>3x.解析:①当x<0时,原不等式显然成立;②当x≥0时,两端平方,得(2x-1)2>9x 2,即5x 2+4x-1<0,解之,得-1<x<51, ∴0≤x<51. 由①②知原不等式的解集为{x|x<51}. 变式提升2(1)解不等式|x 2-3x+2|>x 2-3|x|+2.解析:在同一坐标系内分别画出函数y=|x 2-3x+2|和y=x 2-3|x|+2=|x|2-3|x|+2的图象(如图所示).由图可知,原不等式的解集为{x|x<0或1<x<2}. (2)解不等式|x+1|(x-1)≥0. 解析:1° x+1=0,适合不等式;2° x+1≠0,则|x+1|>0,故原不等式等价于x-1≥0,∴x≥1,显然x+1≠0. ∴原不等式的解集为{x|x≥1或x=-1}. 三、绝对值不等式的证明【例3】 设f(x)=ax 2+bx+c,当|x|≤1时,总有|f(x)|≤1,求证:当|x|≤2时,|f(x)|≤7. 证明:由于f(x)是二次函数,|f(x)|在[-2,2]上的最大值只能是|f(2)|,|f(-2)|或|f(a b 2-)|,故只要证明|f(2)|≤7,|f(-2)|≤7;当|a b 2-|≤2时,有|f(ab 2-)|≤7. 由题意有|f(0)|≤1,|f(-1)|≤1,|f(1)|≤1.由⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=⎪⎩⎪⎨⎧+-=-++==).0()],1()1([21)],0(2)1()1([21,)1(,)1(,)0(f c f f b f f f a c b a f c b a f c f 得∴|f(2)|=|4a+2b+c|=|3f(1)+f(-1)-3f(0)|≤3|f(1)|+|f(-1)|+3|f(0)|≤3+1+3=7, |f(-2)|=|4a-2b+c|=|f(1)+3f(-1)-3f(0)|≤|f(1)|+3|f(-1)|+3|f(0)|≤1+3+3=7. ∵|b|=21|f(1)-f(-1)|≤21(|f(1)|+|f(-1)|)≤21(1+1)=1, ∴当|ab2-|≤2时,|f(a b 2-)|=|a b ac 442-|=|c a b 42-|=|c a b 2-·2b |≤|c|+|a b 2|·2||b ≤1+2×21=2<7.因此当|x|≤2时,|f(x)|≤7.类题演练3已知f(x)=x 2+ax+b(x 、a 、b∈R ,a 、b 是常数),求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 证明:假设|f(1)|、|f(2)|、|f(3)|全都小于21,即有|f(1)|<21,|f(2)|<21,|f(3)|<21. 于是|f(1)+f(3)-2f(2)|≤|f(1)|+|f(3)|+2|f(2)|<21+21+2×21=2.又f(1)+f(3)-2f(2)=2,二者产生矛盾,故|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 变式提升3已知函数f(x)=ax+b,满足|x|≤1,a 2+b 2=1,求证:|f(x)|≤2.证法一:|f(x)|≤2⇔2-≤f(x)≤2⇔f(x)min ≥2-且f(x)max ≤2.若a>0,则f(x)max =f(1)=a+b≤2)(222=+b a ,f(x)min =f(-1)=-a+b≥2])[(222-=+--b a . 若a=0,则f(x)=b 且b 2=1, ∴|f(x)|≤2.若a<0,则f(x)max =f(-1)=-a+b≤2)(222=+b a ,f(x)min =f(1)=a+b≥2)(222-=+-b a . 综上,知不等式成立. 证法二:|f(x)|2-(2)2=(ax+b)2-2(a 2+b 2)=a 2x 2+b 2+2abx-2(a 2+b 2)≤a 2+b 2+2abx-2(a 2+b 2)=2abx-a 2-b 2≤2abx -a 2x 2-b 2=-(ax-b)2≤0, ∴|f(x)|≤2.。