五年级数学上册概念整理
- 格式:doc
- 大小:57.50 KB
- 文档页数:12
五年级数学上册概念整理五年级数学上册概念整理一、小数乘法1、小数乘法计算法则:先按整数乘法算出积,再给积点上小数点。
因数中有几位小数,积的右边(或个位)就有几位小数,小数位数不够时,要在前面补足再点小数点。
2、当一个因数大于1时,积大于另一个因数(另一个因数不等于1);当一个因数小于1时,积小于另一个因数(另一个因数不等于1);当一个因数等于1时,积等于另一个因数。
3、小数的四则运算顺序与整数相同。
小数连乘从左到右依次运算,小数的乘加、乘减混合运算先算乘法再算加法或减法。
4、整数乘法的交换律、结合律和分配律对于小数乘法也适用。
5、一个数(除外)乘大于1的数时,积比原来的数大;一个数(除外)乘小于1的数时,积比原来的数小。
6、一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
7、一个小数乘10、100、1000…只要把这个小数的小数点向右移动一位、两位、三位…二、小数除法:1、除数是整数的除法按整数除法的方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商再除;如果有余数,要添再除。
2、一个数除以小数:先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位;然后按照除数是整数的除法计算。
取商的近似值时要看清题目要求,需要保留几位小数就除到后面一位,再用“四舍五入法”取商的近似值。
3、循环小数是指小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
小数位数是有限的小数叫做有限小数,小数位数是无限的小数叫做无限小数。
4、被除数和除数同时扩大(缩小)相同的倍数,商不变。
被除数扩大(缩小)多少倍,除数不变,商扩大(缩小)多少倍。
被除数不变,除数扩大(缩小)多少倍,商缩小(扩大)多少倍。
5、当除数大于1时,商小于被除数(被除数不等于1);当除数小于1时,商大于被除数(被除数不等于1);当除数等于1时,商等于被除数。
1、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)。
2、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。
如6.3232……的循环节是32.3、小数部分的位数是有限的小数,叫做有限小数。
小数部分的位数是无限的小数,叫做无限小数。
第三单元观察物体4、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程5、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
6、a×a可以写作a•a或a ,读作a的平方。
2a表示a+a7、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
8、所有的方程都是等式,但等式不一定都是方程。
第五单元多边形的面积9、公式:长方形:周长=(长+宽)×字母公式:C=(a+b)×2面积=长×宽~字母公式:S=ab正方形:周长=边长×4~字母公式:C=4a面积=边长×边长~字母公式:S=a平行四边形的面积=底×高字母公式:S=ah三角形的面积=底×高÷2字母公式:S=ah÷2梯形的面积=(上底+下底)×高÷2~字母公式:S=(a+b)h÷2因为平行四边形面积=底×高,所以三角形面积=底×高÷210、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
一、计算公式:1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=aa 或者S=a25、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、三角形的周长=三边之和三角形的内角和=1800四边形内角和=36009、多边形内角和=(边数-2)×180二、数量关系1、单价×数量=总价总价÷数量=单价总价÷单价=数量2、单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量3、速度×时间=路程路程÷时间=速度路程÷速度=时间4、工效×时间=工作总量工作总量÷时间=工效工作总量÷工效=时间5、加数+加数=和一个加数=和-另一个加数6、被减数-减数=差减数=被减数-差被减数=差+ 减数7、因数×因数=积一个因数=积÷另一个因数8、被除数÷除数=商除数=被除数÷商被除数=商×除数9、有余数的除法:被除数=商×除数+余数10、求平均数的方法:总数÷总份数=平均数三、单位间的进率长度单位:1千米=1000米1公里=1千米1米=10分米1分米=10厘米1厘米=10毫米面积单位:1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1公顷=10000平方米1平方千米=100公顷1亩≈666.667平方米质量单位:1吨=1000千克1千克= 1000克= 1公斤= 2市斤体积单位:1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方米= 1方容积单位:1升=1立方分米=1000毫升1毫升=1立方厘米时间单位:1日=24小时1时=60分1分=60秒1星期=7天1世纪=100年1年=12月1年=4个季度1个季度=3个月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年:2月28天, 闰年:2月29天平年全年365天, 闰年全年366天四、定义、定理、性质(一)算术方面1、加法交换律:两数相加交换加数的位置,和不变。
数学五年级上册总复习要点整理一. 算数1. 整数1.1 正整数和负整数的概念1.2 整数的比大小1.3 整数的加减法则及应用1.4 整数的乘除法则及应用2. 分数2.1 分数的概念和性质2.2 分数的比较大小和约分2.3 分数的加减法则及应用2.4 分数的乘除法则及应用3. 小数3.1 小数的概念和性质3.2 小数的读法和写法3.3 小数的比较大小和四则运算4. 算式的变形和计算4.1 算式的基本等式4.2 算式的变形4.3 算式的括号应用4.4 算式的口算加减乘除5. 数的应用5.1 包括数值解释、图形解释等二. 几何1. 植入几何学1.1 植入几何中的点和线1.2 植入几何中的角和三角形1.3 植入几何的统计图形初步2. 视图几何学2.1 视角的概念和画法2.2 视图及其分类3. 几何变换3.1 平移和旋转的概念和画法3.2 对称的概念和画法三. 量1. 长度1.1 长度的测量1.2 长度的运算2. 面积2.1 面积的概念和测量2.2 面积的运算3. 重量3.1 重量的测量3.2 重量的运算4. 容积和长度之间的换算4.1 容积和长度的概念4.2 容积和长度之间的换算四. 数据1. 数据資料1.1 資料的收集1.2 資料的分析2. 平均数2.1 一般用算术平均数2.2 一般应用3. 计数方法3.1 排列表和频数分布表3.2 众数和中位数五. 算法1. 数字串/字符运算1.1 数字串和字符的概念1.2 字符的比较和分类1.3 数字串的基本操作2. 计算机图形学2.1 图形学的概念和分类2.2 图形计算和显示2.3 特殊效果的实现以上是数学五年级上册总复习的要点整理,希望能够对同学们的学习有所帮助。
小学五年级上册数学概念公式大全
一. 四则运算
1. 加法:a + b = c,其中a、b、c都是数字
2. 减法:a - b = c,其中a、b、c都是数字
3. 乘法:a × b = c,其中a、b、c都是数字
4. 除法:a ÷ b = c,其中a、b、c都是数字
二. 平面几何
1. 直角三角形:a²+b²=c²
2. 矩形:a?b=S,其中S为矩形的面积
3. 正方形:a?a=S,其中S为正方形的面积
4. 平行四边形:p?s=S,其中p为平行四边形的周长,s为平行四边形的每条边的长,S为平行四边形的面积
三. 量的表达
1. 比例:A:B=m:n,其中m和n是A和B的比例
2. 同余:A+c=B+c,其中A、B为两个已知量,c为已知的增减量
3. 股份:A:B=p:q,其中A、B是已知份额,p、q分别是他们的比例
四. 图形识别
1. 直线:y = kx + b,其中k为直线斜率,b为直线截距
2. 圆:(x-a)?+(y-b)?=r²,其中a、b为圆心坐标,r为圆半径
3. 抛物线:y=ax²+bx+c,其中a为抛物线一阶导数,b、c为抛物线零阶导数。
人教版五年级数学上册概念知识点整理第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:×3表示的3倍是多少或3个是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
?2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:×(整数部分是0)就是求的十分之八是多少。
×(整数部分不是0)就是求的倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
!4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:¥加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见找4或,见找8或乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)]第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
五年级数学上册知识点归纳一、整数与小数1. 整数的概念:整数包括自然数、0和负整数。
2. 整数的表示:正整数、负整数和0可以表示为数轴上的点,数轴上的点可以表示为整数。
3. 整数的比较:比较整数大小时,可以用数轴、大小关系符号(<、>、=)进行表示。
4. 小数的概念:小数是有限位数或无限循环小数。
二、小数的运算1. 小数的加法:小数相加时,先对齐小数点,然后按照位数进行相加,最后写下小数点。
2. 小数的减法:小数相减时,可以通过改变被减数的符号并转化为加法运算来进行计算。
3. 小数的乘法:小数相乘时,先按照整数乘法的规则进行运算,最后确定小数点的位置。
4. 小数的除法:小数相除时,可以将除数与被除数都乘以相同的10的倍数,使被除数变为整数,然后按照整数除法的规则进行运算,最后确定小数点的位置。
三、分数的概念与运算1. 分数的概念:分数是由分子和分母构成的,分子表示被分的份数,分母表示分成几份。
2. 分数的相等:当分子分母成比例时,表示的分数是相等的。
3. 分数的比较:比较分数大小时,可以通过相等分母,然后比较分子的大小来判断。
4. 分数的加法减法:分数相加减时,需要先找到相同的分母,然后按照分母进行运算,最后化简(约分)。
5. 分数的乘法除法:分数相乘除时,可以直接按照分子分母进行运算,最后化简(约分)。
四、面积和周长1. 面积的概念:面积是二维图形所占的单位面积的总和。
2. 面积的计算:不同二维图形的面积计算方式不同,例如正方形面积=边长的平方,矩形面积=长乘以宽。
3. 周长的概念:周长是封闭图形边界的长度总和。
4. 周长的计算:不同图形的周长计算方式不同,例如正方形周长=4倍边长,矩形周长=2倍长+2倍宽。
五、时、钟与时针、分针1. 时钟的制作:时钟通常由表盘、时针、分针、秒针组成。
2. 读时:通过时针和分针的位置来读取时间,时针指向的数字代表小时,分针所在位置代表分钟。
六、几何图形与变换1. 点、线、面的概念:点是没有长度、宽度和高度的,线是由无数个点连接而成的,面是由无数个线连接而成的。
五年级上册数学书上所有的概念第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
五年级数学上册主要包括以下几个模块的内容:整数的概念与运算、
分数的认识与运算、小数的认识与运算、图形与运动、大数据运算。
一、整数的概念与运算
1.整数的概念:正整数、负整数、零、整数的大小比较。
2.整数的运算:整数的加法、整数的减法、整数的乘法、整数的除法。
3.整数的应用:温度计、高度计、摄氏度和华氏度的转换等。
二、分数的认识与运算
1.分数的概念:分子、分母、真分数、假分数、带分数。
2.分数的比较:相等的分数、分母相同的分数的大小比较。
3.分数的运算:分数的加法、分数的减法、分数的乘法、分数的除法。
4.分数的应用:计算问题中的分数。
三、小数的认识与运算
1.小数的概念:小数点的读法、小数的大小比较。
2.小数的运算:小数的加减法、小数的乘法、小数的除法。
3.分数与小数的转化:分数转化为小数、小数转化为分数。
四、图形与运动
1.各种图形的辨认:多边形、三角形、四边形、五边形、六边形、圆。
2.图形的面积与周长:长方形的面积与周长、正方形的面积与周长、
三角形的面积。
3.时钟和日历的认识:表示时间的时钟,简单的时间计算。
4.坐标的认识:平面直角坐标系、点的坐标表示。
五、大数据运算
1.加减法的计算:整数的加减法运算、分数与整数的加减法运算、小数加减法运算。
2.乘法的计算:整数的乘法运算、分数与整数的乘法运算、小数乘法运算。
3.除法的计算:整数的除法运算、带余除法、分数的除法运算、小数的除法运算。
4.大数计算:多位整数的加减法运算、多位整数的乘法算术、多位整数的除法算术。
小学数学五年级上册知识点(全面版)
1. 数的认知
- 自然数的认识,包括整数、分数和小数的区分;
- 进制的概念,如十进制和百分制;
- 数的大小比较,包括用不等号表示大小关系。
2. 加减法运算
- 加法的概念和运算方法,包括整数、分数和小数的加法;- 减法的概念和运算方法,包括整数、分数和小数的减法;- 两种运算的应用场景,如解决实际问题。
3. 乘法运算
- 乘法的概念和运算方法,包括整数、分数和小数的乘法;- 乘法表的背诵,掌握乘法口诀;
- 乘法的应用,如计算周长、面积等。
4. 除法运算
- 除法的概念和运算方法,包括整数、分数和小数的除法;- 除法运算中的商和余数的概念;
- 除法在实际问题中的应用。
5. 数的整体关系
- 大数与单位之间的换算,如千克和克的换算;
- 长度、容量和重量的换算,如米和厘米的换算等;
- 数的应用问题,如比例和比较。
6. 几何图形
- 图形的基本概念,如点、线、线段、直线和射线;
- 三角形、矩形、正方形、圆形等基本几何图形的认识;
- 图形的特征和性质,如边数、角度、对称性等。
7. 数据统计
- 数据的收集和整理;
- 数据的图表表示,如条形图、折线图和饼图;
- 数据的分析和解读,包括最大值、最小值、中位数等。
以上是小学数学五年级上册的全面知识点介绍。
希望对你有帮助!。
五年级数学上册概念整理一、小数乘法1、小数乘法计算法则:①先按整数乘法算出积,再给积点上小数点。
②看因数中一共有几位小数,就从积的右边起(或个位)数出几位,点上小数点。
③当乘得的积的小数位数不够时,要在前面用0补足,再点小数点。
2、当一个因数大于1时,积大于另一个因数。
(另一个因数≠0)当一个因数小于1时,积小于另一个因数。
(另一个因数≠0)当一个因数等于1时,积等于另一个因数。
3、、小数的四则运算顺序跟整数是一样的。
①小数连乘的运算顺序是:从左到右依次运算;②小数的乘加、乘减混合运算的顺序是:先算乘法,再算加法或减法。
4、整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
5、一个数(0除外)乘大于1的数时,积比原来的数(大)如:3.4×1.5>3.4 0.9×3>0.9一个数(0除外)乘小于1的数时,积比原来的数(小)。
如:3.4×0.74<3.4 0.9×0.3<0.96、一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
7、一个小数乘10、100、1000…只要把这个小数的小数点向右移动一位、两位、三位…二、小数除法:1、除数是整数的除法按整数除法的方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0再除;如果有余数,要添0再除。
2、一个数除以小数:先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位;然后按照除数是整数的除法计算。
取商的近似值时要看清题目要求,需要保留几位小数就除到后面一位,再用“四舍五入法”取商的近似值。
3、一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
小数位数是有限的小数叫做有限小数。
小数位数是无限的小数叫做无限小数。
循环小数是无限小数。
4、被除数和除数同时扩大(缩小)相同的倍数,商不变。
被除数扩大(缩小)多少倍,除数不变,商扩大(缩小)多少倍。
被除数不变,除数扩大(缩小)多少倍,商缩小(扩大)多少倍。
5、、当除数大于1时,商小于被除数。
(被除数≠0);当除数小于1时,商大于被除数。
(被除数≠0);当除数等于1时,商等于被除数。
三、观察物体1、通过观察,我们发现了至少能看到长方体的一个面,也可能看到两个面,最多一次能看见三个不同的面,从不同方向观察物体,看到的形状是不同的,并且站在任一位置,不能同时看到长方体所有的面。
2、同一个物体,从不同角度观察,看到的形状各不相同。
3、同一方向观察不同物体的立体图形,得到的形状也可能是相同的。
四、解简易方程1、用字母表示数加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)只有字母与字母、数字与字母之间的乘号才可以省略不写,省略数字和字母之间的乘号后,数字一定要写在字母的前面。
a 2表示两个a相乘,读作a的平方。
2、含有未知数的等式叫做方程。
使方程左右两边都相等的未知数的值叫做方程的解。
求方程的解的过程叫做解方程。
3、等式保持不变的规律:等式的两边都加上或减去相同的数,等式不变。
等式的两边都乘上或除以相同的数(0除外)等式不变。
五、多边形的面积1、沿平行四边形的高剪下,通过移拼,可以拼成一个长方形。
拼成长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,拼成长方形的面积与平行四边形面积相等,因为长方形面积长乘以宽,所以平行四边形底乘以高。
如果用S表示平行四边形的面积,用a、h分别表示平行四边形的底和高,面积公式可以写成:S=ah2、把两个完全一样的三角形可以拼成一个平行四边形,拼成平行四边形的底与三角形的底相等,平行四边形的高与三角形的高相等,每个三角形的面积是拼成平行四边形面积的一半,因为平行四边形的面积等于底乘以高,所以三角形面积等于底乘以高除以2。
如果用S表示三角形的面积,用a和h分别表示三角形的底和高,面积公式可以写成:S=ah÷2。
3、把两个完全一样的梯形可以拼成一个平行四边形,拼成平行四边形的底等于梯形的上底加下底的和,平行四边形的高与梯形的高相等,每个梯形的面积是拼成平行四边形面积的一半,因为平行四边形面积等于底乘以高,所以梯形等于(上底+下底)×高÷2. 如果用S表示梯形的面积,用a、b和h分别表示梯形的上底和高,面积公式可以写成S=(a+b)h÷24、组合图形的面积一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积。
5、长度单位进率1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米人民币单位进率1元=10角1角=10分质量单位进率1吨=1000千克1千克=1000克面积单位进率1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方米=10000平方厘米高级单位转化为低级单位乘以进率,小数点向右移动。
低级单位转化为高级单位除以进率,小数点向左移动。
六、统计与可能性1、看一个规则公平不公平,主要看它们的可能性是不是一样的。
2、中位数就是把一组数据按大小顺序排列后最中间的数据就是中位数,它不受偏大偏小数据的影响。
平均数、中位数都是反映一组数据集中趋势的统计量,但当一组数据中某些数据严重偏大或偏小时,最好选用中位数来表示这组数据的一般水平。
平均数和中位数都是反映一组数据集中趋势的统计量,应根据数据组中各个数据的分布情况合理选择统计量。
如果一组数据中某些数据严重偏大或偏小,最好选用中位数来表示该组数据比较合适。
七、数学广角1、邮政编码由六位数字组成,前两位数字表示省、直辖市或自治区。
前三位表示邮区,前四位表示县(市),最后两位数字表示的是投递局或邮政所。
2、身份证号码是由18位数字组成:前6位为行政区划代号,行政区代码它只记录到省、市、区(县)。
前两位表示省,接下来两位表示市,再后面两位表示县或区。
第7至14位为出生日期码,第7至10位表示年份,11、12位表示月份,13、14位表示日期。
第15至17位为顺序码,表示同一地址所在范围内对同年同月同日生的人编写的顺序,单号分给男性,双号分给女性。
第18位为校验码。
3、图书的条形码就像是图书的身份证,它是国际上通用的比较科学合理的一种图书编码系统,外文简称ISBN。
国际标准符号以“ISBN”作为标志,后面带有10个数字。
这10个数字分为4部分,即组号、出版代号、书序号、检验号,各部分之间用“-”或空位隔开。
ISBN-7-107-18617-6 “7”是组号,代表一个国家、地区或语种的编号,7即指中国。
“107”指出版社号,可以多达7位数,这个107就是指人民教育出版社社号。
“18617”是书序号,就是出版社每种出版物的编号,“6”是检验码。
应用题过关1).学校图书室的面积是85平方米,用边长0.9米的正方形瓷砖铺地,100块够吗?2).1公顷松柏每天分泌杀菌素30千克,24.5公顷松柏树31天分泌杀菌素多少千克?3).某班有班费24.2元,同学们卖废品又得到16.4元。
这些钱可以买7本书,或者21根绳子。
一本书多少钱?一根跳绳多少钱?4).一支铺路队。
上午工作3.5小时,铺了164.9米,下午工作4.5小时,铺了206.7米.上午铺得快还是下午铺得快?5).张燕家3头奶牛上周的产奶量是220.5千克,每头奶牛一天产奶多少千克?6).2台同样的抽水机,3小时可以浇地1.2公顷,1台抽水机每小时可以浇地多少公顷?7).小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每瓶装0.4千克,需要准备几个瓶?8).王阿姨用一根25米长的红丝带包装礼盒.每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?9).制作一种蛋糕,每个需要0.32千克面粉.李师傅领了4千克面粉做蛋糕,最多可以做几个?10).果农们要将680千克的葡萄装进纸箱运走,每个纸箱最多可以装15千克,全部装完需要多少个纸箱? 11).一种奶粉一瓶450克,每冲一杯需要16克奶粉和9克方糖,冲完这瓶奶粉,大约需要多少克方糖?12).林华的妈妈去市场买水果.她先花3.5元买了2.5千克苹果,还准备买3千克橙子,橙子的单价是苹果的1.6倍.买橙子应付多少钱?13).一个玩具厂做一个玩具兔需要3.8元的材料.现在改进制作方法,每一个只需用3.6元的材料.原来准备做180个玩具兔的材料,现在可以做几个14)在老年人运动会上,刘大伯参加了长跑比赛,全程1.5千米,用了9.7分钟,取得第一名。
李大伯用时比刘大伯多2分钟,李大伯跑1千米平均需要多少分钟?15)小明买了3千克梨和3千克苹果共付20.1元,小方买了1千克梨和3千克苹果共付15.1元。
每千克苹果和每千克梨各多少元?16)小军家的汽车行驶90千米耗油7升,亮亮家汽车行驶140千米耗油11升。
谁家的汽车耗油低?(得数保留一位小数)17)小明和小刚收集了一些玻璃球,小明的玻璃球个数是小刚的3倍,如果小明给小刚6个,两个人就一样多了。
他们俩人分别有多少个玻璃球?18)妈妈买回一箱脐橙,按计划天数,如果每天吃4个,则多出48个脐橙;如果每天吃6个,则又少8个脐橙。
计划吃多少天?这箱脐橙共有多少个?19)一块三角形广告牌,底是2.8米,高是 1.8米,如果每平方米需要用0.48千克油漆,刷这块广告牌的正面至少需要多少千克油漆?(得数保留整数)20)2004年雅典奥运会中国队共获32枚金牌,比1998年汉城奥运会的7倍少3枚,1998年中国队共获得多少枚金牌?五年级数学上册易错题和应用题练习一、填空1、一个直角三角形的三条边的长度分别是3,4,5厘米,这个三角形的面积是()。
斜边上的高是()厘米。
2、两个()三角形能拼成一个平行四边形,两个()三角形能拼成一个长方形。
3、0.15小时=()分138分=()小时1时42分=()时2.4时=()时()分20500平方米=()公顷4.05公顷=()平方米4平方米4平方分米=()平方米4、一个长方形木框,拉成一个平行四边形,()不变,()变小。
一个平行四边形木框,拉成一个长方形,面积(),周长()。
5、一个三位小数四舍五入后是2.56,这个小数最大可能是(),最小可能是()。
6、等底等高的三角形是等底等高的平行四边形的面积的()。