2007年广州市高二数学竞赛试卷
- 格式:doc
- 大小:735.50 KB
- 文档页数:10
高二数学竞赛试题及答案广东高二数学竞赛试题及答案(广东)试题一:函数与方程1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(x) \)在区间[-1,2]上的最大值和最小值。
2. 解方程\( x^2 - 5x + 6 = 0 \)。
答案:1. 函数\( f(x) = 2x^2 - 3x + 1 \)的导数为\( f'(x) = 4x - 3 \)。
令\( f'(x) = 0 \)得\( x = \frac{3}{4} \)。
在区间[-1, 2]上,\( f(x) \)在\( x = \frac{3}{4} \)处取得最小值\( f\left(\frac{3}{4}\right) = -\frac{1}{8} \),在区间端点\( x = -1 \)和\( x = 2 \)处分别取得最大值\( f(-1) = 4 \)和\( f(2) = 5 \)。
2. 方程\( x^2 - 5x + 6 = 0 \)可以分解为\( (x - 2)(x - 3) = 0 \),解得\( x = 2 \)或\( x = 3 \)。
试题二:不等式1. 证明不等式\( \frac{1}{a} + \frac{1}{b} \geq 4 \)在\( a, b > 0 \)时成立。
2. 解不等式\( |x - 1| + |x - 3| \geq 4 \)。
答案:1. 由于\( a, b > 0 \),根据调和平均数与几何平均数的关系,有\( \frac{1}{a} + \frac{1}{b} \geq 2\sqrt{\frac{1}{ab}} =2\sqrt{\frac{1}{ab}} \cdot 2 \geq 4 \)。
2. 根据绝对值的性质,\( |x - 1| + |x - 3| \)表示数轴上\( x \)到1和3两点的距离之和。
当\( x \)在区间[1, 3]之外时,距离之和大于4。
2007 年高考数学广东卷(理科)参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率k n kk n n P P C k P --=)1()(第 I 卷 (选择题 共40分)一.选择题:本大题共8小题,每小题5分,共40分. 1.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A .[0,2]B .[1,2]C .[0,4]D .[1,4] 2.已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 A .1+2i B . 1–2i C .2+i D .2–i 3.已知0<a <1,log log 0a a m n <<,则A .1<n <mB . 1<m <nC .m <n <1D .n <m <1 4.若α是第二象限的角,且2sin 3α=,则=αcosA .13 B . 13- C . D . 5.等差数列{}n a 中,12010=S ,那么29a a +的值是 A . 12 B . 24 C .16 D . 486.三棱锥D —ABC 的三个侧面分别与底面全等,且AB =AC =3,BC =2,则二面角A —BC —D 的大小为A . 300B . 450C .600D .900 7. 已知变量a ,b 已被赋值,要交换a 、b 的值,采用的算法是A .a=b, b=aB .a=c, b=a, c=bC .a=c, b=a, c=aD .c=a, a=b, b=c8.已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8y x x -=<- B .)1(1822>=-x y xC .1822=+y x (x > 0) D .221(1)10y x x -=>第 Ⅱ 卷 (非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分。
广东高二高中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.A.B.C.D.2.若A.1B.1或C.D.1或3.在等差数列中,若,则A.14B.15C.16D.174.已知椭圆,若成等差数列,则椭圆的离心率为( )A.B.C.D.5.如图,三棱柱的所有棱长均为2,且点在面上的射影为BC中点O,则异面直线AB与CC所成角的余弦值为( )1A.B.C.D.6.已知函数,则要得到其导函数的图象,只需将函数的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.已知定义域为的函数,满足;当时,单调递增.如果,对于的值,下列判断正确的是( )A.恒小于0B.恒大于0C.可能为0D.可正可负二、其他如图:向量,点为圆心的圆弧上运动,设,则的最大值为( )A.1B.C.2D.三、填空题1.已知 ;2.不等式的解集为3.把4名大学毕业生分配到A、B、C三个单位实习,每个单位至少一人,已知学生甲只去A 单位,则不同的分配方案有种(用数字作答)4.已知点为抛物线上的一个动点,为圆上的动点,设点到抛物线的准线距离为,则的最小值为5.已知数列,利用如右图所示的程序框图计算的值,则判断框中应填6.下列命题中:①在频率分布直方图中估计平均数,可以用每个小矩形的高乘以底边中点的横坐标之和;②线性相关系数r的的绝对值越接近1,表示两变量的相关性越强③回归直线一定过样本中心;④已知随机变量,则其中正确命题的序号是四、解答题1.、(本小题满分12分)已知函数为偶函数,且其图象两相邻对称轴间的距离为(1)求的解析式;(2)若把图象按向量平移,得到函数的图象,求的单调增区间.2.(本小题满分12分)高二级某次数学测试中,随机从该年级所有学生中抽取了100名同学的数学成绩(满分150分),经统计成绩在的有6人,在的有4人.在,各区间分布情况如右图所示的频率分布直方图,若直方图中,和对应小矩形高度相等,且对应小矩形高度又恰为对应小矩形高度的一半.(1)确定图中的值;(2)设得分在110分以上(含110分)为优秀,则这次测试的优秀率是多少?(3)某班共有学生50人,若以该次统计结果为依据,现随机从该班学生中抽出3人, 则至少抽到一名数学成绩优秀学生的概率是多少?3.(1)、据此说明四棱锥P-ABCD具有的特征及已知条件;(2)、由你给出的特征及条件证明:面PAD⊥面PCD(3)、若PC中点为E,求直线AE与面PCD所成角的余弦值.4.(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足.(1) 当t变化时,求点P的轨迹方程;(2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F,求直线BC的方程.5.(本小题满分14分)已知函数()(1) 判断函数的单调性;(2) 是否存在实数使得函数在区间上有最小值恰为? 若存在,求出的值;若不存在,请说明理由.6.(本小题满分14分)下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为,若已知(1)求的值;(2)求用表示的代数式;=+++……+求使不等式(3)设表中对角线上的数,,,……,组成一列数列,设Tn成立的最小正整数n.广东高二高中数学竞赛测试答案及解析一、选择题1.A.B.C.D.【答案】 D【解析】略2.若A.1B.1或C.D.1或【答案】B【解析】略3.在等差数列中,若,则A.14B.15C.16D.17【答案】C【解析】略4.已知椭圆,若成等差数列,则椭圆的离心率为( )A.B.C.D.【答案】B【解析】略5.如图,三棱柱的所有棱长均为2,且点在面上的射影为BC中点O,则异面直线AB与CC所成角的余弦值为( )1A.B.C.D.【答案】 D【解析】略6.已知函数,则要得到其导函数的图象,只需将函数的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】 C【解析】略7.已知定义域为的函数,满足;当时,单调递增.如果,对于的值,下列判断正确的是( )A.恒小于0B.恒大于0C.可能为0D.可正可负【答案】A【解析】略二、其他如图:向量,点为圆心的圆弧上运动,设,则的最大值为( )A.1B.C.2D.【答案】C【解析】略三、填空题1.已知 ;【答案】【解析】略2.不等式的解集为【答案】(0,2)【解析】略3.把4名大学毕业生分配到A、B、C三个单位实习,每个单位至少一人,已知学生甲只去A 单位,则不同的分配方案有种(用数字作答)【答案】12【解析】略4.已知点为抛物线上的一个动点,为圆上的动点,设点到抛物线的准线距离为,则的最小值为【答案】【解析】略5.已知数列,利用如右图所示的程序框图计算的值,则判断框中应填【答案】【解析】略6.下列命题中:①在频率分布直方图中估计平均数,可以用每个小矩形的高乘以底边中点的横坐标之和;②线性相关系数r的的绝对值越接近1,表示两变量的相关性越强③回归直线一定过样本中心;④已知随机变量,则其中正确命题的序号是【答案】②③④【解析】略四、解答题1.、(本小题满分12分)已知函数为偶函数,且其图象两相邻对称轴间的距离为(1)求的解析式;(2)若把图象按向量平移,得到函数的图象,求的单调增区间.【答案】 y=2cos2x,的单调递增区间为【解析】∴又…………………………………………………7分(或由恒成立) ∴…………………………………………8分(2)由(1)得…………………………………10分令得的单调递增区间为…………………………………12分2.(本小题满分12分)高二级某次数学测试中,随机从该年级所有学生中抽取了100名同学的数学成绩(满分150分),经统计成绩在的有6人,在的有4人.在,各区间分布情况如右图所示的频率分布直方图,若直方图中,和对应小矩形高度相等,且对应小矩形高度又恰为对应小矩形高度的一半.(1)确定图中的值;(2)设得分在110分以上(含110分)为优秀,则这次测试的优秀率是多少?(3)某班共有学生50人,若以该次统计结果为依据,现随机从该班学生中抽出3人, 则至少抽到一名数学成绩优秀学生的概率是多少?【答案】0.024,,0.4,【解析】(1)由题意知,成绩分布在间的频率为0.9,3.(1)、据此说明四棱锥P-ABCD具有的特征及已知条件;(2)、由你给出的特征及条件证明:面PAD⊥面PCD(3)、若PC中点为E,求直线AE与面PCD所成角的余弦值.【答案】①ABCD为直角梯形,其中AB∥CD,AD⊥AB,(AB⊥CD)②PA⊥面ABCD,③PA="AD=CD=2, " AB="1 "【解析】(1)由图可知四棱锥P-ABCD中有①ABCD为直角梯形,其中AB∥CD,AD⊥AB,(AB⊥CD)②PA⊥面ABCD,③PA="AD=CD=2, " AB="1 " ………………………5分⑵由(1)知PA⊥面ABCD ∴PA⊥CD又在直角梯形ABCD中,AD⊥CD而PA,AD面PAD中, ∴CD⊥面PADCD面PCD∴面PAD⊥面PCD ……………………9分⑶取PD中点F,连结EF;则EF在,PA=AD,PA AD∴AF⊥PD且又由(2)知面PAD⊥面PCD∴AF⊥面PCD∴∠AEF为AE与面PCD所成的角…………………………………12分在△AEF中, ∠AFE=900,,EF=1∴即AE与面PCD所成角的余弦值为…………………………………14分(3)由E为PC中点∴E由(2)知面PCD的一个法向量为设AE与面PCD所成角为即AE与面PCD所成角的余弦值为4.(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足.(1) 当t变化时,求点P的轨迹方程;(2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F, 求直线BC的方程.【答案】,2x+2y+5=0【解析】18、解:(1)设又由…………………………2分由①②消去t得点P的轨迹方程为:……………………………7分5.(本小题满分14分)已知函数()(1) 判断函数的单调性;(2) 是否存在实数使得函数在区间上有最小值恰为? 若存在,求出的值;若不存在,请说明理由.【答案】见详解答案【解析】当,在上为增函数,此时, …………9分当,在上为减函数,在上为增函数;此时, …………11分当,在上为减函数,此时, ……13分综上,存在满足题意. …………………14分6.(本小题满分14分)下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为,若已知(1)求的值;(2)求用表示的代数式;=+++……+求使不等式(3)设表中对角线上的数,,,……,组成一列数列,设Tn成立的最小正整数n.【答案】,,4【解析】20、解:⑴由题意有:又由…………………………………4分⑶由(2)知故使原不等式成立的最小正整数为4. …………………………………14分。
试卷类型:A2007年广州市普通高中毕业班综合测试(二)数 学(文科)2007.4本试卷分选择题和非选择题两部分,共4页,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上.用2B 铅笔将答题卡上试卷类型(A)涂黑.在答题卡右上角的“试室号”栏填写本科目试室号,在“座位号”列表内填写座位号,并用2B 铅笔将相应的信息点涂黑.不按要求填涂的,答卷无效.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考试必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.参考公式:()()22221211236n n n n ++++++=()S r r l π'=+圆台侧(,r r '分别表示圆台上、下底面半径,l 表示母线长)第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin 480的值为A.12-B. C.12 D 2.函数2xy =(x ∈R )的反函数为A .2log y x =(0x >) B.2log y x =(1x >) C.log 2x y =(0x >) D.log 2x y =(1x >)3.某个路口的交通指示灯,红灯时间为30秒,黄灯时间为10秒,绿灯时间为40秒.当你到达路口时,看见红灯的概率是A.18 B .38 C.12 D.584.已知等差数列{}n a 的前三项分别为1a -,21a +,7a +,则这个数列的通项公式为A.43n a n =-B.21n a n =-C.42n a n =-D.23n a n =-5.已知向量OA 和向量OC 对应的复数分别为34i +和2i -,则向量AC 对应的复数为 A.53i + B.15i + C .15i -- D.53i --6.1a =是直线1y ax =+和直线()21y a x =--垂直的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 7.一个圆台的两底面的面积分别为π,16π,侧面积为25π,则这个圆台的高为A.3 B .4 C.59.如图1所示,ABCDEF 为正六边形,则以F 、C 为焦点,且经过A 、E 、D 、B 四点的双曲线的离心率为 1 11 D 110.已知方程210ax bx +-=(,a b ∈R 且0a >)有两个实数根,其中一个根在区间()1,2内,则a b -的取值范围为A .()1,-+∞ B.(),1-∞- C.(),1-∞ D.()1,1-图1第二部分 非选择题(共100分)二、填空题:本大题共5小题,其中11~13题是必做题,14~15题是选做题,每小题5分,满分20分.11.已知函数()sin ,03y x x πωω⎛⎫=+∈> ⎪⎝⎭R 的最小正周期为π,则ω= . 12.某班的54名学生对数学选修专题《几何证明选讲》和《极坐标与参数方程》的选择情况如下(每位学生至少选.......1.个专题...):两个专题都选的有6人,选《极坐标与参数方程》的学生数比选《几何证明选讲》的多8人,则只选修了《几何证明选讲》的学生有 人.13.已知函数()f x 满足()12f =,()()()111f x f x f x ++=-,则()3f 的值为 ,()()()()1232007f f f f ⋅⋅⋅⋅的值为 .▲选做题:在下面两道小题中选做一题,二题都选的只计算第14题的得分.14.在极坐标系中,若过点()4,0且与极轴垂直的直线交曲线6cosρθ=于,A B 两点,则=AB .15.如图2,P 是⊙O 的直径AB 延长线上一点,PC 与⊙O 相切于点C ,∠APC 的角平分线交AC 于点Q ,则AQP ∠的大小 为_________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相邻整数的概率; (Ⅱ)求取出的两个球上标号之和能被3整除的概率.17.(本小题满分14分) 如图3所示,在直三棱柱111ABC A B C -中,90ACB ∠=,2AB =,1BC =,1AA =(Ⅰ)证明:1AC ⊥平面11AB C ; (Ⅱ)若D 是棱1CC 的中点,在棱AB 上是否存在一点E ,使DE平面11AB C ?证明你的结论.图218.(本小题满分12分)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且222a cb ac +-=. (Ⅰ)求角B 的大小; (Ⅱ)若3c a =,求tan A 的值.19.(本小题满分14分)已知椭圆E 的两个焦点分别为()11,0F -、()21,0F ,点31,2C ⎛⎫ ⎪⎝⎭在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅱ)若点P 在椭圆E 上,且满足12PF PF t =,求实数t 的取值范围.20.(本小题满分14分)已知曲线C :x y e =(其中e 为自然对数的底数)在点()1,P e 处的切线与x 轴交于点1Q ,过点1Q 作x 轴的垂线交曲线C 于点1P ,曲线C 在点1P 处的切线与x 轴交于点2Q ,过点2Q 作x 轴的垂线交曲线C 于点2P ,……,依次下去得到一系列点1P 、2P 、……、n P ,设点n P 的坐标为(),n n x y (*n ∈N ).(Ⅰ)分别求n x 与n y 的表达式; (Ⅱ)设O 为坐标原点,求21nii OP=∑.21.(本小题满分14分)已知函数()242f x ax x =+-,若对任意1x ,2x ∈R 且12x x ≠,都有()()121222f x f x x x f ++⎛⎫<⎪⎝⎭. (Ⅰ)求实数a 的取值范围;(Ⅱ)对于给定的实数a ,有一个最小的负数()M a ,使得(),0x M a ∈⎡⎤⎣⎦时,()44f x -≤≤都成立,则当a 为何值时,()M a 最小,并求出()M a 的最小值.2007年广州市普通高中毕业班综合测试(二)数学(文科)参考答案及评分标准一、选择题:本大题考查基本知识和基本运算.共10小题,每小题5分,满分50分. 1.D 2.A 3.B 4.A 5.C 6.C 7.B 8.B 9.D 10.A二、填空题:本大题考查基本知识和基本运算.本大题共5小题,其中11~13题是必做题,14~15题是选做题.每小题5分,满分20分.第13题中的第一个空2分,第二个空3分. 11.2 12.20 13.12-;314. 15.135三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)(本小题主要考查古典概型等基础知识,考查或然与必然的数学思想与方法,以及运算求解能力)解法一:利用树状图可以列出从甲、乙两个盒子中各取出1个球的所有可能结果:可以看出,试验的所有可能结果数为16种. ……4分 (Ⅰ)所取两个小球上的标号为相邻整数的结果有1-2,2-1,2-3,3-2,3-4,4-3,共6种. ……6分故所求概率63168P ==. 答:取出的两个小球上的标号为相邻整数的概率为38. ……8分 (Ⅱ)所取两个球上的数字和能被3整除的结果有1-2,2-1,2-4,3-3,4-2,共5种. ……10分故所求概率为516P =. 答:取出的两个小球上的标号之和能被3整除的概率为516. ……12分 解法二:设从甲、乙两个盒子中各取1个球,其数字分别为y x ,,用),(y x 表示抽取结果,则所有可能有()1,1,()1,2,()1,3,()1,4,()2,1,()2,2,()2,3,()2,4,()3,1,()3,2,()3,3,()3,4,()4,1,()4,2,()4,3,()4,4,共16种. ……4分(Ⅰ)所取两个小球上的数字为相邻整数的结果有()1,2, ()2,1, ()2,3,()3,2, ()3,4,()4,3,共6种. ……6分故所求概率63168P ==. 答:取出的两个小球上的标号为相邻整数的概率为38. ……8分 (Ⅱ)所取两个球上的数字和能被3整除的结果有()1,2, ()2,1, ()2,4, ()3,3, ()4,2,共5种. ……10分故所求概率为516P =. 答:取出的两个小球上的标号之和能被3整除的概率为516. ……12分 (注:利用列表的方法求解,仿照上述解法给分)17.(本小题满分14分)(本小题主要考查空间中线面关系,考查数形结合的数学思想和方法,以及空间想象能力、逻辑推理能力和运算求解能力)证明:(Ⅰ)∵90ACB ∠=,∴BC AC ⊥.∵三棱柱111ABC A B C -为直三棱柱,∴1BC CC ⊥. ∵1ACCC C =,∴BC ⊥平面11ACC A .∵1AC ⊂平面11ACC A ,∴1BC AC ⊥, ∵11BCB C ,则111B C AC ⊥. ……4分在Rt ABC ∆中,2AB =,1BC =,∴AC .∵1AA =∴四边形11ACC A为正方形. ∴11AC AC ⊥. ……6分 ∵1111B C AC C =,∴1AC ⊥平面11AB C . ……7分 (Ⅱ)当点E 为棱AB 的中点时,DE 平面11AB C . ……9分证明如下:如图,取1BB 的中点F ,连EF 、FD 、DE ,∵D 、E 、F 分别为1CC 、AB 、1BB 的中点,∴1EFAB .∵1AB ⊂平面11AB C ,EF ⊄平面11AB C , ∴EF平面11AB C . ……12分同理可证FD 平面11AB C .∵EFFD F =,∴平面EFD平面11AB C .∵DE ⊂平面EFD , ∴DE平面11AB C . ……14分18.(本小题满分12分)(本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系、解三角形等基础知识,考查运算求解能力)(Ⅰ)解:由余弦定理,得222cos 2a c b B ac+-==12. ……2分∵0B π<<,∴ 3B π=. ……4分(Ⅱ)解法一:将3c a =代入222a cb ac +-=,得b =. ……6分由余弦定理,得222cos 214b c a A bc +-==. ……8分∵0A π<<,∴sin 14A ==……10分∴sin tan cos A A A ==……12分解法二:将3c a =代入222a cb ac +-=,得b =. ……6分由正弦定理,得sin B A =. ……8分∵3B π=,∴sin 14A =. ……10分又b a =>,则B A >,∴cos A ==.∴sin tan cos A A A == ……12分解法三:∵3c a =,由正弦定理,得sin 3sin C A =. ……6分 ∵3B π=,∴()23C A B A ππ=-+=-. ∴2sin 3sin 3A A π⎛⎫-= ⎪⎝⎭. ……8分 ∴22sincos cos sin 3sin 33A A A ππ-=.1sin 3sin 2A A A +=.∴5sin A A =. ……10分∴sin tan cos A A A ==……12分19.(本小题满分14分)(本小题主要考查椭圆的概念、椭圆的方程等基础知识,考查待定系数法、数形结合的数学思想与方法,以及运算求解能力)(Ⅰ)解法一:依题意,设椭圆E 的方程为22221x y a b+=(0a b >>),由已知半焦距1c =,∴221a b -=. ① ……2分 ∵点31,2C ⎛⎫⎪⎝⎭在椭圆E 上,则221914a b+=. ② ……4分 由①、②解得,24a =,23b =.∴椭圆E 的方程为22143x y +=. ……6分 解法二:依题意,设椭圆E 的方程为22221x y a b+=(0a b >>),∵点31,2C ⎛⎫⎪⎝⎭在椭圆E 上,∴1224a CF CF =+=,即2a =. ……3分 由已知半焦距1c =,∴2223b a c =-=. ……5分∴椭圆E 的方程为22143x y +=. ……6分(Ⅱ)设()00,P x y ,由12PF PF t =,得()()00001,1,x y x y t -----=,即22001x y t +=+. ③ ……8分 ∵点P 在曲线C 上,∴2200143x y +=. ④ 由③得22001y t x =+-,代入④,并整理得()2042x t =-. ⑤ ……10分由④知,2004x ≤≤, ⑥ ……12分 结合⑤、⑥,解得:23t ≤≤.∴实数t 的取值范围为[]2,3. ……14分20.(本小题满分14分)(本小题主要考查数列、导数等基础知识,考查有限与无限的数学思想与方法,以及抽象概括能力、运算求解能力和创新意识)解:(Ⅰ)∵xy e '=,∴曲线C :x y e =在点()1,P e 处的切线方程为()1y e e x -=-,即y ex =. 此切线与x 轴的交点1Q 的坐标为()0,0,∴点1P 的坐标为()0,1. ……2分 ∵点n P 的坐标为(),n n x y (*n ∈N ),∴曲线C :x y e =在点n P (),n n x y 处的切线方程为()n n x xn y ee x x -=-, ……4分 令0y =,得点1n Q +的横坐标为11n n x x +=-.∴数列{}n x 是以0为首项,1-为公差的等差数列.∴1n x n =-,1n n y e -=.(*n ∈N ) ……6分 (Ⅱ)∵()()2221221i ii i OP x y i e -=+=-+, ……8分∴222221231nin i OPOP OP OP OP ==++++∑()()()()()2212022240121n e e e n e ---⎡⎤=+++++++-+⎣⎦……10分 ()()22122241211n n e e e---⎡⎤⎡⎤=++++-+++++⎣⎦⎣⎦ ……12分 ()()22121161n n n n e e -----=+-()()()2222121161n n n n n e e e ----=+-. ……14分21.(本小题满分14分)(本小题主要考查函数及其运算、不等式及其性质等基础知识,考查化归与转化、数形结合的数学思想方法,以及抽象概括能力、逻辑推理能力、运算求解能力和创新意识)解:(Ⅰ)∵()()121222f x f x x x f ++⎛⎫-⎪⎝⎭22212121122222x x x x ax bx c ax bx c a b c +++++++⎛⎫⎛⎫=++-⎪ ⎪⎝⎭⎝⎭()21204a x x =--<, ……2分 ∵12x x ≠,∴0a >.∴实数a 的取值范围为()0,+∞. ……4分(Ⅱ)∵()2224422f x ax x a x a a ⎛⎫=+-=+-- ⎪⎝⎭,显然()02f =-,对称轴20x a=-<. ……6分 (1)当424a --<-,即02a <<时,()2,0M a a ⎛⎫∈- ⎪⎝⎭,且()4f M a =-⎡⎤⎣⎦. 令2424ax x +-=-,解得x =此时()M a 取较大的根,即()M a==, ∵02a <<,∴()1M a =>-. ……10分数学试题A (文科) 第 11 页 共 11 页 (2)当424a --≥-,即2a ≥时,()2M a a<-,且()4f M a =⎡⎤⎣⎦. 令2424ax x +-=,解得x =, 此时()M a 取较小的根,即()M a ==, ∵2a ≥,∴()3M a =≥-.……13分 当且仅当2a =时,取等号.∵31-<-,∴当2a =时,()M a 取得最小值-3. ……14分。
2007年东莞市高中数学竞赛初赛参考答案及评分标准一、选择题DCCBAD 二、填空题7.92 8.10 9.200810.13 11.}3,25,21,23{-12.4;]5 ,152(- 三、解答题13.(1)解:由于不等式012>++bx ax的解集为}12|{<<-x x ,所以二次函数12++=bx axy 的图象是开口向下的抛物线,………………1分 且与x 轴交于两点(-2,0),(1,0).………………2分 所以-2和1是方程012=++bx ax的两根,………………3分由此得⎪⎩⎪⎨⎧=⨯--=+-,112,12a a b ………………4分 解得21-==b a .………………5分所以1-=+b a .………………6分 (2)解:因为0>x ,所以69≥+xx ,………………8分当且仅当xx 9=即3=x 时,等号成立.………………10分因此46292-=-≤--=xx y ,即3=x 时,函数取最大值-4.………12分14.解:(1) OQ OP x f ⋅=)(x x x 2sin cos sin 3-=………………2分22cos 12sin 23xx --= ………………4分21)62sin(-+=πx ………………5分∴22,T πωπω=== ………………6分当Z k k x ∈+=,6ππ时,………………7分, ()f x 取最大值21. …………8分(2)当OQ OP ⊥时,()0f x =,即021)62sin(=-+πx .……………10分又[]π,0∈x ,所以解得0=x 或3π=x 或π=x . ………………12分15.解:(1)连接1BD ,因为E 、F 分别为1D D 、D B 的中点,所以EF 是三角形D BD 1的中位线,即1//BD EF ;……2分 又11E F B D C ⊄面,111B D B D C ⊂面, 所以EF //面11C BD .……4分 (2)连接1B D 、1BC ,正方体中,11C D ⊥面11B BCC ,C B 1⊂面11B BCC , 所以11C D ⊥C B 1.……5分在正方形11B BCC 中,两对角线互相垂直,即1BC ⊥C B 1,……6分11C D 、1BC ⊂面11D BC ,所以C B 1⊥面11D BC . 111B D B D C ⊂面,所以有C B 1⊥ 1BD ,……7分在(1)已证:1//BD EF ,所以1E F B C ⊥.……8分(3)在正方体中,⊥CF 面D D BB 11,结合(2)可知,EF 为三棱锥FC B E 1-的高,且1CFB∆为直角三角形.……9分在BCF Rt BF B Rt EDF Rt ∆∆∆,,1中,计算得:EF1FB,FC11分所以13262131)21(31111=⨯⨯⨯⨯=⋅⋅⋅==--EF FC F B V V FC B E EFCB.……12分16.解:圆C 化成标准方程为2223)2()1(=++-y x ,圆心C (1,-2),半径为3.…1分假设存在以AB 为直径的圆M ,圆心M 的坐标为),(b a .则直线l 的方程为a x b y -=-,即0=-+-a b y x .………………2分由于CM ⊥l ,∴1-=⋅l CM k k ,即01=++b a ,得1--=a b , ① ………………3分 且CM =23+-a b .………………4分∵ 以AB 为直径的圆M 过原点,CDBFE D 1C 1B 1A A 1∴OM MB MA ==.………………6分 又2)3(92222+--=-=a b CMCBMB,………………7分222baOM +=,………………8分∴ 2222)3(9baa b +=+--②………………9分把①代入②得 0322=--a a ,解得123-==a a 或………………10分当25,23-==b a 时,此时直线l 的方程为04=--y x ;………………12分当0,1=-=b a 时,此时直线l 的方程为01=+-y x .………………13分故这样的直线l 是存在的,方程为04=--y x 或01=+-y x .………………14分17.解: (1) 2121)21()21()2121()1(=++=+=f f f f .………………2分 (2) ∵21)1()()1(++=+f n f n f ,∴,1)()1(=-+n f n f ∴)}({n f 是首相为12, 公差为1的等差数列.………………4分22)1(21)()3()2()1(2nn n n n f f f f =-+=++++∴ .………………6分(3) )(x f 在R上是增函数.………………7分 证明: 设,, ,2121R x x x x ∈<∵0)21(=f ,∴)()()()(111212x f x x x f x f x f -+-=-)(21)()(1112x f x f x x f -++-=21)21()(12++-=f x x f).21(12+-=x x f ………………10分∵12x x >, ∴,212112>+-x x ………………11分由21>x 时0)(>x f ,知.0)21()21(12=>+-f x x f ………………12分 即)()(12x f x f >, ………………13分 ∴)(x f 在R上是增函数.………………14分18.解:(1)由题意知n a S n n 32-=及)1(3211+-=++n a S n n ,………………1分得123n n a a +=+, ………………2分 ∴,2331=+++n n a a3=∴c . ………………4分(2),32111-==a S a31=∴a .………………5分由(1)知112)3(3-⋅+=+n n a a ,………………6分*32.3N n a nn ∈-=∴ ………………7分(3)设存在S ,P ,r *,,,s p r N S P r a a a ∈<<且使成等差数列,则r s p a a a +=2,………………8分 即 )323()323()323(2-⋅+-⋅=-⋅rsp.………………9分rs p 2221+=∴+ ,………………10分即sr s p -+-+=2121(*).………………11分因为*N r p s ∈、、,且r p s <<,12+-s p 、sr -2均为偶数,从而(*)式产生矛盾.…………13分所以这样的三项不存在.………………14分(采用其他方法求解的,请参照给分.)。
广东高二高中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知集合,则()A.B.C.D.2.已知=b-i, (a,b∈R),其中i为虚数单位,则a+b=()A.-1 B.1 C.2 D.33.已知a、b是实数,则“a>1,b>2”是“a+b>3且ab>2”的A.充分而不必要条件B.必要而不充分条件C.充分且必要条件D.既不充分也不必要条4.函数是()A.周期为的奇函数B.周期为的奇函数C.周期为的偶函数D.非奇非偶函数5.已知平面向量, , 且, 则m=( )A. 4B.-1C. 2D. -46.某几何体的三视图及尺寸如图示,则该几何体的表面积为A. B. C. D.7.已知向量,且,若变量x,y满足约束条,则z的最大值为A.1B.2C.3D.48.等差数列中,,且成等比数列,则A.B.C.D.9.以轴为对称轴,以坐标原点为顶点,准线的抛物线的方程是A.B.C.D.10.起点到终点的最短距离为A.16B.17C.18D.19二、填空题1.的定义域--__________2.校高中部有三个年级,其中高三有学生人,现采用分层抽样法抽取一个容量为的样本,已知在高一年级抽取了人,高二年级抽取了人,则高中部共有学生__ _人.3.在中,,且,则的面积是_____4.(几何证明选讲选做题)如图,已知的两条直角边,的长分别为,,以为直径的圆与交于点,则=.5.(坐标系与参数方程选做题)直线截曲线(为参数)的弦长为_ _三、解答题1.(本小题共12分)已知函数(1)求的最小正周期;(2)若,, 求的值2.(本题满分14分)有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为(1)请完成上面的列联表;(2)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” .(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.3.(本题12分)如图所示,在直四棱柱中, ,点是棱上一点.(1)求证:面;(2)求证:;4.(本题满分14分)为赢得2010年广州亚运会的商机,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:万元,)的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大?5.(本小题满分14分)已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作,其中圆心P的坐标为.(1) 若FC是的直径,求椭圆的离心率;(2)若的圆心在直线上,求椭圆的方程.6.(本小题满分14分)设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为(1)求的值及的表达式;(2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围;(3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由.广东高二高中数学竞赛测试答案及解析一、选择题1.已知集合,则()A.B.C.D.【答案】B【解析】.2.已知=b-i, (a,b∈R),其中i为虚数单位,则a+b=()A.-1 B.1 C.2 D.3【答案】D【解析】,所以b=2,a=1,a+b=3.3.已知a、b是实数,则“a>1,b>2”是“a+b>3且ab>2”的A.充分而不必要条件B.必要而不充分条件C.充分且必要条件D.既不充分也不必要条【答案】A【解析】若a>1,b>2,则a+b>3且ab>2.反之不成立.所以“a>1,b>2”是“a+b>3且ab>2”的充分而不必要条件.4.函数是()A.周期为的奇函数B.周期为的奇函数C.周期为的偶函数D.非奇非偶函数【答案】C【解析】,所以f(x)是周期为的偶函数.5.已知平面向量, , 且, 则m=( )A. 4B.-1C. 2D. -4【答案】D【解析】因为,所以.6.某几何体的三视图及尺寸如图示,则该几何体的表面积为A. B. C. D.【答案】B【解析】.7.已知向量,且,若变量x,y满足约束条,则z的最大值为A.1B.2C.3D.4【答案】C【解析】因为,所以,当直线经过直线和直线的交点A(1,1)时,z取得最大值,最大值为3.8.等差数列中,,且成等比数列,则A.B.C.D.【答案】B【解析】因为成等比数列,所以.9.以轴为对称轴,以坐标原点为顶点,准线的抛物线的方程是A.B.C.D.【答案】A【解析】由题意可知抛物线的开口方向向左,并且p=2,所以应选A.10.起点到终点的最短距离为A.16B.17C.18D.19【答案】B【解析】最短距离应为,长度为4+2+4+7=17.二、填空题1.的定义域--__________【答案】【解析】由,所以定义域为.2.校高中部有三个年级,其中高三有学生人,现采用分层抽样法抽取一个容量为的样本,已知在高一年级抽取了人,高二年级抽取了人,则高中部共有学生__ _人.【答案】3700【解析】由题意知高三抽取了185-75-60=50.所以高中部共有学生.3.在中,,且,则的面积是_____【答案】6【解析】因为,所以,又因为,所以.4.(几何证明选讲选做题)如图,已知的两条直角边,的长分别为,,以为直径的圆与交于点,则=.【答案】【解析】因为AC=3,BC=4,所以AB=5,设BD=x,因为BC为圆O的切线,根据切割线定理可知.5.(坐标系与参数方程选做题)直线截曲线(为参数)的弦长为_ _【答案】【解析】曲线消参后得到普通方程为,由圆心(0,1)到直线3x+4y-7=0的距离,所以弦长.三、解答题1.(本小题共12分)已知函数(1)求的最小正周期;(2)若,, 求的值【答案】(Ⅰ)函数的最小正周期为. (Ⅱ)。
广州市数学竞赛高二试题广州市数学竞赛高二试题涵盖了高中数学的多个领域,包括但不限于代数、几何、概率统计和微积分。
以下是一套模拟试题,供参赛者练习。
一、选择题(每题3分,共15分)1. 若\( a \)和\( b \)是方程\( x^2 + 4x + 5 = 0 \)的根,那么\( a^2 + 4a \)的值等于:A. -5B. 5C. 0D. 不确定2. 在直角坐标系中,点\( P(x, y) \)关于直线\( y = x \)的对称点的坐标是:A. \( (y, x) \)B. \( (-x, -y) \)C. \( (-y, -x) \)D. \( (x, -y) \)3. 若函数\( f(x) = 2x^3 - 3x^2 + 5x - 7 \)的导数是\( f'(x) \),那么\( f'(1) \)的值等于:A. 3B. 2C. -3D. -24. 已知正方体的体积为8,那么其表面积为:A. 16B. 24C. 32D. 645. 抛物线\( y^2 = 4x \)的焦点坐标是:A. \( (1, 0) \)B. \( (0, 1) \)C. \( (2, 0) \)D. \( (0, 2) \)二、填空题(每题4分,共20分)6. 若\( \sin \theta = \frac{3}{5} \),且\( \theta \)为锐角,则\( \cos \theta \)的值为______。
7. 一个等差数列的首项为2,公差为3,第10项的值为______。
8. 已知函数\( y = \ln(x) \)的定义域为______。
9. 若\( a \),\( b \),\( c \)为实数,且\( a^2 + b^2 + c^2 =1 \),则\( ab + bc + ca \)的最大值为______。
10. 一个圆的半径为5,圆心到直线\( x - y + 5 = 0 \)的距离为4,则直线与圆的位置关系是______。
2007年全国高中数学联合竞赛加试试卷(考试时间:上午10:00—12:00)一、(本题满分50分)如图,在锐角△ABC 中,AB<AC ,AD 是边BC 上的高,P 是线段AD 内一点。
过P 作PE ⊥AC ,垂足为E ,做PF ⊥AB ,垂足为F 。
O 1、O 2分别是△BDF 、△CDE 的外心。
求证:O 1、O 2、E 、F 四点共圆的充要条件为P 是△ABC 的垂心。
二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。
如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。
现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。
问最少取出多少个棋子才可能满足要求?并说明理由。
三、(本题满分50分)设集合P ={1,2,3,4,5},对任意k ∈P和正整数m ,记f (m ,k )=∑=⎥⎦⎤⎢⎣⎡++5111i i k m ,其中[a ]表示不大于a 的最大整数。
求证:对任意正整数n ,存在k ∈P 和正整数m ,使得f (m ,k )=n 。
2007年全国高中数学联合竞赛加试试题参考答案一、(本题满分50分)如图,在锐角△ABC 中,AB<AC ,AD 是边BC 上的高,P 是线段AD 内一点。
过P 作PE ⊥AC ,垂足为E ,作PF ⊥AB ,垂足为F 。
O 1、O 2分别是△BDF 、△CDE 的外心。
求证:O 1、O 2、E 、F 四点共圆的充要条件为P 是△ABC 的垂心。
证明:连结BP 、CP 、O 1O 2、EO 2、EF 、FO 1。
因为PD ⊥BC ,PF ⊥AB ,故B 、D 、P 、F 四点共圆,且BP 为该圆的直径。
又因为O 1是△BDF 的外心,故O 1在BP 上且是BP 的中点。
同理可证C 、D 、P 、E 四点共圆,且O 2是的CP 中点。
综合以上知O 1O 2∥BC ,所以∠PO 2O 1=∠PCB 。
2007年全国高中数学联合竞赛一试一、填空题:本大题共6个小题,每小题6分,共36分。
2007*1、如图,在正四棱锥ABCD P -中,060=∠APC ,则二面角C PB A --的平面角的余弦值为A.71 B.71- C.21 D.21-◆答案:B★解析:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。
连结CM 、AC ,则∠AMC 为二面角A−PB−C 的平面角。
不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。
在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。
2007*2、设实数a 使得不等式2232a a x a x ≥-+-对任意实数x 恒成立,则满足条件的a 所组成的集合是A.⎥⎦⎤⎢⎣⎡-31,31 B.⎥⎦⎤⎢⎣⎡-21,21 C.⎥⎦⎤⎢⎣⎡-31,41 D.[]3,3-◆答案:A★解析:令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对R k ∈,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的R k ∈成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
2007*3、将号码分别为9,,2,1 的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从袋中再摸出一个球,其号码为b 。
则使不等式0102>+-b a 成立的事件发生的概率等于A.8152 B.8159 C.8160 D.8161◆答案:D ★解析:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为8192=个。
2007年广州市高二数学竞赛试卷题号一二三合计(11)(12)(13)(14)(15)得分评卷员考生注意:⒈用钢笔、签字笔或圆珠笔作答;⒉不准使用计算器;⒊考试用时120分钟,全卷满分150分.一、选择题:本大题共4小题,每小题6分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确选项前的字母代号填在该小题后的括号内.1.设函数,若,则实数的取值范围是().A.B.C.D.2.椭圆的焦点为和,点在椭圆上,如果线段的中点在轴上,那么是的().A.7倍B.5倍C.4倍D.3倍3.已知集合,则集合中元素的个数为().A.0个B.1个C.2个D.无数个4.设是内一点,且,定义,其中分别是的面积,若,则的最小值是().A.B.18 C.16 D.9二、填空题:本大题共6小题,每小题6分,共36分.把答案填在题中横线上.5.已知复数满足:,则__________.6.在区间上任取两实数a,b,则二次方程有实数解的概率为.7.已知函数满足:,则.8.奇函数在上为减函数,若对任意的,不等式恒成立,则实数的取值范围为.9.四面体ABCD中,AB=CD=6,其余的棱长均为5,则与该四面体各个表面都相切的内切球的半径长等于.10.已知满足,则函数的最大值与最小值之和为.三、解答题:本大题共5小题,共90分.要求写出解答过程.11.(本小题满分15分)已知函数,其中,(),若相邻两对称轴间的距离不小于.(Ⅰ)求的取值范围;(Ⅱ)在中,分别是角的对边,,当最大时,,求的面积.各项都为正数的数列{a n}的前n项和为S n ,已知.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足,,数列{c n}满足,数列{c n}的前n项和为T n,当n为偶数时,求T n;(Ⅲ)同学甲利用第(Ⅱ)问中的T n设计了一个程序如图,但同学乙认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意同学乙的观点?请说明理由.n:=n+2n:=0P n:=T n-P n:=2007?打印n结束NoYes多面体的直观图,主视图,俯视图,左视图如下所示.(Ⅰ)求与平面所成角的正切值;(Ⅱ)求面与面所成二面角的余弦值;(Ⅲ)求此多面体的体积.A 1BCDA B 1C 1D 1直观图主视图 a左视图俯视图aa如图,已知抛物线与圆相交于、两点,且(为坐标原点),直线与圆相切,切点在劣弧(含A 、B 两点)上,且与抛物线相交于、两点,是、两点到抛物线的焦点的距离之和.(Ⅰ)求的值; (Ⅱ)求的最大值,并求取得最大值时直线的方程.O BM NxyOF l A已知函数是区间上的减函数.(Ⅰ)若在上恒成立,求t的取值范围;(Ⅱ)讨论关于x的方程的根的个数.2007年广州市高二数学竞赛参考答案1.选B.2.选A.3.选D.4.选B.5.填1.6.填.7.填2008.8.填.9.填.10.填20.11.解:(Ⅰ).,∴函数的周期.由题意可知解得.故的取值范围是.(Ⅱ)由(Ⅰ)可知的最大值为1,.,.而,,.由余弦定理,知,,又,联立解得或..(或用配方法.)12.解:(Ⅰ)当时,由,解得, 当时,由,得.两式相减,并利用,求得.∴数列是首项为2,公差为1的等差数列.∴().(Ⅱ)∵是首项为2,公比为2的等比数列,∴. 当n 为偶数时,.(Ⅲ)∵(n 为偶数),设(n 为偶数),∴.且,(利用数列的单调性或函数的单调性判断) ∴,即(n 为偶数).因此同学乙的观点正确.13.(Ⅰ)解:由已知图可得,平面平面,取中点,连接, 在等腰中,有,则平面.∴是与平面所成的角.∵,∴.故与平面所成角的正切值为2. (Ⅱ)解法1:取中点,连接,同理有平面,即是在平面内的射影. 取的中点M ,取的中点N ,连接MN ,AM ,AN ,则就是面与面所A 1BC D AB 1C 1D 1HK成的二面角.∵MN=a ,,∴.即.∴面与面所成二面角的余弦值为.解法2:取中点,连接,同理有平面,即是在平面内的射影,在中,,,又,设面与面所成二面角的大小为,则.∴面与面所成二面角的余弦值为.(Ⅲ)解:∵该多面体为长方体削去四个全等的三棱锥,每个三棱锥的体积都为.∴此多面体的体积.14. (Ⅰ)解:设点的坐标为,由于抛物线和圆关于轴对称,故点的坐标为.,,即.点在抛物线上,.,即...点的坐标为.点在圆上,,又,解得.(Ⅱ)解法1:设直线的方程为:,因为是圆O的切线,则有,又,则.OBMNxyAON1M1Fl即的方程为:.联立即.设,则.如图,设抛物线的焦点为,准线为,作,垂足分别为.由抛物线的定义有:.令,则.∴.又∵,∴.∴当时,有最大值11.当时,,故直线的方程为.解法2:设直线与圆相切的切点坐标为,则切线的方程为.由消去,得.设,则.如图,设抛物线的焦点为,准线为,作,垂足分别为.由抛物线的定义有:.,.,当时,有最大值11.当时,,故直线的方程为.15.解:(Ⅰ)在上是减函数,在上恒成立,,.又在上单调递减,∴只需,(其中)恒成立.令,则,即而恒成立,.(Ⅱ)令,,当时,,在上为增函数;上为减函数,当时,.而,∴函数在同一坐标系的大致图象如图所示,∴①当,即时,方程无解.②当,即时,方程有一个根.③当,即时,方程有两个根.11 / 11。
2007年广州市高二数学竞赛试卷考生注意:⒈用钢笔、签字笔或圆珠笔作答; ⒉不准使用计算器;⒊考试用时120分钟,全卷满分150分.一、选择题:本大题共4小题,每小题6分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确选项前的字母代号填在该小题后的括号内.1.设函数17,0,()20.xx f x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨≥,若(1)1f a +<,则实数a 的取值范围是( ).A .()∞-,-4B .()4,0-C .()0,+∞D .()(),40,-∞-+∞2.椭圆221123x y +=的焦点为1F 和2F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么1PF 是2PF 的( ).A .7倍B .5倍C .4倍D .3倍 3.已知集合()221,lg lg lg 4M x y x y x y ⎧⎫⎛⎫=+=+⎨⎬ ⎪⎝⎭⎩⎭,则集合M 中元素的个数为( ). A .0个 B .1个 C .2个 D .无数个4.设M 是ABC ∆内一点,且AB AC ⋅= 30BAC ∠=,定义()(,,)f M m n p =,其中,,m n p 分别是,,MBC MCA MAB ∆∆∆的面积,若1(),,2f P x y ⎛⎫= ⎪⎝⎭,则14x y +的最小值是( ).A .)91 B .18 C .16 D .9二、填空题:本大题共6小题,每小题6分,共36分.把答案填在题中横线上.5.已知复数z 满足:210z z ++=,则=+++++2007321zz z z __________.6.在区间[]2,2-上任取两实数a ,b ,则二次方程220x ax b -+=有实数解的概率为 . 7.已知函数()f x 满足:()()(),(1)4f m n f m f n f +==,则2(1)(2)(1)f f f +2(2)(4)(3)f f f ++2(3)(6)(5)f f f +++ 2(251)(502)(501)f f f ++= . 8.奇函数()f x 在R 上为减函数,若对任意的(]0,1x ∈,不等式()()220f kx f x x +-+->恒成立,则实数k 的取值范围为 . 9.四面体ABCD 中,AB =CD =6,其余的棱长均为5,则与该四面体各个表面都相切的内切球的半径长等于 . 10.已知y x ,满足221643441x y x -≤≤-,则函数10-+=y x z 的最大值与最小值之和为 . 三、解答题:本大题共5小题,共90分.要求写出解答过程.11.(本小题满分15分)已知函数()f x = m n ,其中(sin cos )x x x ωωω=+m ,(cos sin ,2sin )x x x ωωω=-n (0ω>),若()f x 相邻两对称轴间的距离不小于2π. (Ⅰ)求ω的取值范围;(Ⅱ)在ABC ∆中,,,a b c 分别是角,,A B C的对边,3a b c =+=,当ω最大时,()1f A =,求ABC ∆的面积. 12.(本小题满分20分)各项都为正数的数列{a n }的前n 项和为S n ,已知()221n n n S a a +=+.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足12b =,12n n b b +=,数列{c n }满足()()nn na n cb n ⎧=⎨⎩为奇数为偶数,数列{c n }的前n 项和为T n ,当n 为偶数时,求T n ; (Ⅲ)同学甲利用第(Ⅱ)问中的T n 设计了一个程序如图,但同学乙认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意同学乙的观点?请说明理由.13.(本小题满分20分)多面体1111ABCD A BC D 的直观图,主视图,俯视图,左视图如下所示.(Ⅰ)求A A 1与平面ABCD 所成角的正切值; (Ⅱ)求面11D AA 与面ABCD 所成二面角的余弦值; (Ⅲ)求此多面体的体积.主视图左视图14.(本小题满分20分)如图,已知抛物线()2:20C x py p =>与圆22:8O x y +=相交于A 、B 两点,且0OA OB =(O 为坐标原点),直线l 与圆O 相切,切点在劣弧 AB (含A 、B 两点)上,且与抛物线C 相交于M 、N 两点,d 是M 、N 两点到抛物线C 的焦点的距离之和. (Ⅰ)求p 的值;(Ⅱ)求d 的最大值,并求d 取得最大值时直线l15.(本小题满分20分)已知函数()sin f x x x λ=+是区间[]1,1-上的减函数.(Ⅰ)若2()1f x t t λ≤++在[1,1]x ∈- 上恒成立,求t 的取值范围; (Ⅱ)讨论关于x 的方程 2ln 2xx ex m x=-+ 的根的个数.2007年广州市高二数学竞赛参考答案1.选B . 2.选A . 3.选D . 4.选B . 5.填1. 6.填14. 7.填2008. 8.填(),2-∞.9 10.填20.11.解:(Ⅰ)22()cos sin sin f x x x x x ωωωω==-+⋅ m nx x ωω2sin 32cos +=)62sin(2πω+=x .0>ω ,∴函数()f x 的周期22T ππωω==. 由题意可知,22,22πωππ≥≥即T 解得01ω<≤. 故ω的取值范围是{|01}ωω<≤.(Ⅱ)由(Ⅰ)可知ω的最大值为1,)62sin(2)(π+=∴x x f .1)(=A f ,21)62sin(=+∴πA . 而132666A πππ<+<,ππ6562=+∴A ,3π=∴A . 由余弦定理,知bca cb A 2cos 222-+=,223b c bc ∴+-=,又3b c +=,联立解得21b c =⎧⎨=⎩或12b c =⎧⎨=⎩.23sin 21==∴∆A bc S ABC .(或用配方法2,333)(2=∴=+=-+bc c b bc c b .1sin 2ABC S bc A ∆∴==) 12.解:(Ⅰ)当1n =时,由()211121S a a +=+,解得12a =, 当2n ≥时,由()221n n n S a a +=+,得()211121n n n S a a ---+=+.两式相减,并利用1n n n a S S -=-,求得11n n a a --=.∴数列{}n a 是首项为2,公差为1的等差数列.∴1n a n =+(*n ∈N ).(Ⅱ)∵{}n b 是首项为2,公比为2的等比数列,∴2n n b =.当n 为偶数时,()()24131222nn n T a a a -=+++++++()114122214nn a a n --+=⋅+-()2242143nn n +=+-. (Ⅲ)∵2244n n P n =+(n 为偶数), 设44742323n n n n d T P n =-=⋅--(n 为偶数), ∴4681012142007d d d d d d <<<<<<< .且22007d <, (利用数列的单调性或函数的单调性判断) ∴2007n d ≠,即2007n n T P -≠(n 为偶数). 因此同学乙的观点正确.13.(Ⅰ)解:由已知图可得,平面⊥AB A 1平面ABCD ,取AB 中点H ,连接H A 1,在等腰AB A 1∆中,有AB H A ⊥1,则⊥H A 1平面ABCD . ∴AB A 1∠是A A 1与平面ABCD 所成的角.∵12A H AH =,∴11tan A HA AB AH∠=2=.故A A 1与平面ABCD 所成角的正切值为2.(Ⅱ)解法1:取AD 中点K ,连接KH K D ,1,同理有⊥K D 1平面ABCD ,即AHK ∆是11D AA ∆在平面ABCD 内的射影.取HK 的中点M ,取11A D 的中点N ,连接MN ,AM ,AN ,则MAN ∠就是面11D AA 与面ABCD 所成的二面角. ∵MN =a,4AM a =,∴tan MN MAN AM ∠==.即1cos 3MAN ∠=. ∴面11D AA 与面ABCD 所成二面角的余弦值为13. 解法2:取AD 中点K ,连接KH K D ,1,同理有⊥K D 1平面ABCD ,即AHK ∆是11D AA ∆在平面ABCD 内的射影,在11D AA ∆中,a D A a AD AA22,251111===,28311a S D AA =∆,又281a S AHK =∆,设面11D AA 与面ABCD 所成二面角的大小为α,则31cos 11==∆∆D AA AHK S S α.∴面11D AA 与面ABCD 所成二面角的余弦值为13. (Ⅲ)解:∵该多面体为长方体削去四个全等的三棱锥,每个三棱锥的体积都为3111322224a a a a ⋅⋅⋅⋅=.∴此多面体的体积333154246V a a a =-⋅=.14. (Ⅰ) 解:设点A 的坐标为()11,x y ()10x <,由于抛物线C 和圆O 关于y 轴对称,故点B 的坐标为()11,x y -.0OA OB =,2111()0x x y ∴-+= , 即22110x y -+=.点A 在抛物线C 上,∴2112x py =. 21120py y ∴-+=, 即()1120y p y -+=.110,2y y p ≠∴= .12x p ∴=-.∴点A 的坐标为()2,2p p -.点A 在圆O 上,()()22228p p ∴-+=,又0p >,解得1p =. (Ⅱ) 解法1:设直线l 的方程为:y kx b =+,因为l 是圆O 的切线,则有=,又0b >,则b = 即l的方程为:y kx =+联立22.y kx x y ⎧=+⎪⎨=⎪⎩即(()2222810y k y k -+++=.设()(),,,M M N N M x y N x y,则22M N y y k +=+.如图,设抛物线C 的焦点为F ,准线为L ,作11,MM L NN L ⊥⊥,垂足分别为11,M N . 由抛物线的定义有:11d MF NF MM NN =+=+1M N y y =++221k =+.令t =2222k t =-.∴()224125d t t t =+-=+-.又∵11k -≤≤2t ≤≤. ∴当2t =时,d 有最大值11.当2t =时,1k =±,故直线l 的方程为4y x =±+.解法2:设直线l 与圆O 相切的切点坐标为()00,x y ,则切线l 的方程为008x x y y +=. 由0028,2.x x y y x y +=⎧⎨=⎩ 消去x ,得()222000162640y y y x y -++=. 设()(),,,M M N N M x y N x y ,则2002162M N y x y y ++=.如图,设抛物线C 的焦点为F ,准线为L ,作11,MM L NN L ⊥⊥,垂足分别为11,M N . 由抛物线的定义有:11d MF NF MM NN =+=+1M N y y =++20021621y x y +=+. 22008x y =- , ()200216281y y d y +-=+20016161y y =+-20111652y ⎛⎫=+- ⎪⎝⎭.02y ≤≤ ∴当02y =时,d 有最大值11.当02y =时,02x =±,故直线l 的方程为4y x =±+. 15.解:(Ⅰ)()sin f x x x λ=+ 在[]1,1-上是减函数, ()cos 0f x x λ'∴=+≤在[]1,1-上恒成立, cos ,cos [cos1,1]x x λ∴≤-∈, 1λ∴≤-.又()f x 在[]1,1-上单调递减, max ()(1)sin1,f x f λ∴=-=-- ∴只需2sin11t t λλ--≤++,2(1)sin110t t λ∴++++≥ (其中1λ≤-)恒成立.令2()(1)sin11()g t t λλλ=++++≤-1, 则()11t g +≤⎧⎪⎨-≥⎪⎩0,0.,即211sin11t t t +≤⎧⎨--+++≥⎩0,0.2sin1t t t ≤⎧∴⎨-+≥⎩-1,0.而2sin1t t -+≥0恒成立, t ∴≤-1.(Ⅱ)令212ln (),()2xf x f x x ex m x ==-+, 121ln ()xf x x-'= , 当(]0,x e ∈时,1()f x '≥0, 1()f x ∴在(0,]e 上为增函数; 11[,),()()[,)x e f x f x e '∈+∞≤∴+∞时0,在上为减函数, 当x e =时,1max 11()()f x f e e==. 而222()()f x x e m e =-+-,∴①当21m e e ->,即21m e e >+时,方程无解. ②当21m e e -=, 即21m e e =+时,方程有一个根.③当21m e e -<, 即21m e e+<时,方程有两个根.。