高中数学第三章不等式3.1不等关系习题精选北师大版必修5
- 格式:doc
- 大小:308.00 KB
- 文档页数:5
第三章 §1一、选择题1.(2014·四川理,4)若a>b>0,c<d<0,则一定有( )A .a c >b dB .a c <b dC .a d >b cD .a d <b c[答案] D[解析] 本题考查不等式的性质,a c -b d =ad -bc cd ,cd>0,而ad -bc 的符号不能确定,所以选项A 、B 不一定成立.a d -b c =ac -bd dc ,dc>0,由不等式的性质可知ac<bd ,所以选项D 成立.2.如果a ∈R ,且a2+a<0,那么a ,a2,-a ,-a2的大小关系为( )A .a2>a>-a2>-aB .-a>a2>-a2>aC .-a>a2>a>-a2D .a2>-a>a>-a2[答案] B[解析] 因为a2+a<0,所以a2<-a ,a<-a2,又由于a≠0,∴-a2<a2,即a<-a2<a2<-A .故选B .3.设a ,b ∈R ,若a -|b|>0,则下列不等式中正确的是( )A .b -a>0B .a3+b3<0C .a2-b2<0D .b +a>0[答案] D[解析] 利用赋值法:令a =1,b =0排除A ,B ,C ,选D .4.若a>b>c ,a +2b +3c =0,则( )A .ab>acB .ac>bcC .ab>bcD .a|b|>c|b|[答案] A[解析] ∵a>b>c 且a +2b +3c =0,∴a>0,c<0.又∵b>c 且a>0,∴ab>aC .选A .5.若-1<α<β<1,则下面各式中恒成立的是( )A .-2<α-β<0B .-2<α-β<-1C .-1<α-β<0D .-1<α-β<1[答案] A[解析] 由题意得-1<α<1,-1<-β<1,α-β<0,故-2<α-β<2且α-β<0,故-2<α-β<0,因此选A .6.如果a >0,且a≠1,M =loga(a3+1),N =loga(a2+1),那么( )A .M >NB .M <NC .M =ND .M 、N 的大小无法确定[答案] A[解析] 当a >1时a3+1>a2+1,y =logax 单增,∴loga(a3+1)>loga(a2+1).当0<a <1时a3+1<a2+1,y =logax 单减.∴loga(a3+1)>loga(a2+1),或对a 取值检验.选A .二、填空题7.如果a>b ,那么下列不等式:①a3>b3;②1a <1b ;③3a>3b ;④lga>lgB .其中恒成立的是________.[答案] ①③[解析] ①a3-b3=(a -b)(a2+b2+ab)=(a -b)[(a +b 2)2+34b2]>0;③∵y =3x 是增函数,a>b ,∴3a>3b当a>0,b<0时,②④不成立.8.设m =2a2+2a +1,n =(a +1)2,则m 、n 的大小关系是________.[答案] m≥n[解析] m -n =2a2+2a +1-(a +1)2=a2≥0.三、解答题9.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:不等关系的不等式.[解析] 设需安排x 艘轮船和y 架飞机,则⎩⎪⎨⎪⎧ 300x +150y≥2 000250 x +100 y≥1 500x≥0y≥0,∴⎩⎪⎨⎪⎧ 6x +3y≥405x +2y≥30x≥0y≥0.10.(1)已知a>b ,e>f ,c>0.求证:f -ac<e -bC .(2)若bc -ad≥0,bd>0.求证:a +b b ≤c +d d .[证明] (1)∵a>b ,c>0,∴ac>bc ,∴-ac<-bc ,∵f<e ,∴f -ac<e -bC .(2)∵bc -ad≥0,∴ad≤bc ,又∵bd>0,∴a b ≤c d ,∴a b +1≤c d +1,∴a +b b ≤c +d d .一、选择题1.下列不等式:①x2+3>2x(x ∈R);②a3+b3≥a2b +ab2(a ,b ∈R);③a2+b2≥2(a -b -1)中正确的个数为( )A .0B .1C .2D .3[答案] C[解析] 对于①,x2+3-2x =(x -1)2+2>0恒成立,对于②,a3+b3-a2b -ab2=a2(a -b)+b2(b -a)=(a -b)(a2-b2)=(a -b)2(a +b),∵a 、b ∈R ,∴(a -b)2≥0,而a +b>0,或a +b =0,或a +b<0,故②不正确,对于③,a2+b2-2a +2b +2=a2-2a +1+b2+2b +1=(a -1)2+(b +1)2≥0,∴③正确,故选C .2.已知a ,b ,c ,d 均为实数,有下列命题:( ) ①若ab <0,bc -ad >0,则c a -d b >0;②若ab >0,c a -d b >0,则bc -ad >0; ③若bc -ad >0,c a -d b >0,则ab >0.其中正确命题的个数是A .0B .1C .2D .3[答案] C[解析] ①∵ab <0,∴1ab <0,又∵bc -ab >0, ∴1ab ·(bc -ad)<0即c a -d b <0,∴①错;②∵ab >0,c a -d b >0,∴ab(c a -d b )>0,即:bc -ab >0,∴②正确;③∵c a -d b >0,∴bc -ad ab >0,又∵bc -ad >0,∴ab >0,∴③正确.选C .3.下列各式中,对任何实数x 都成立的一个式子是( )A .lg(x2+1)≥lg2xB .x2+1>2xC .1x2+1≤1 D .x +1x ≥2[答案] C[解析] A 中x>0;B 中x =1时,x2+1=2x ;C 中任意x ,x2+1≥1,故1x2+1≤1;D 中当x<0时,x +1x ≤0.4.若a>b ,c>d ,则下列不等式中成立的一个是( )A .a +d>b +cB .ac>bdC .a c >b dD .d -a<c -b [答案] D[解析] ∵a>b ⇒-a<-bc>d ⇒d<c ⇒d -a<c -B .∴选D .二、填空题5.若1<a<3,-4<b<2,则a -|b|的取值范围是________.[答案] (-3,3)[解析] ∵0≤|b|<4,∴-4<-|b|≤0.又1<a<3,∴-3<a -|b|<3.6.已知1≤a +b≤4,-1≤a -b≤2,则4a -2b 的取值范围是________.[答案] [-2,10][解析] 令4a -2b =x(a +b)+y(a -b),∴4a -2b =(x +y)a +(x -y)B .∴⎩⎪⎨⎪⎧ x +y =4,x -y =-2,∴⎩⎪⎨⎪⎧ x =1,y =3.∴⎩⎪⎨⎪⎧ 1≤a +b≤4,-3≤3a -b ≤6.∴-2≤4a -2b≤10.三、解答题7.某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.[解析] 设每天派出甲型卡车x 辆,乙型卡车y 辆.根据题意,应有如下的不等关系:(1)甲型卡车和乙型卡车的总和不能超过驾驶员人数.(2)车队每天至少要运360 t 矿石.(3)甲型车不能超过4辆,乙型车不能超过7辆.要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎩⎪⎨⎪⎧ x +y≤910×6x +6×8y≥3600≤x≤40≤y≤7,即⎩⎪⎨⎪⎧ x +y≤95x +4y≥300≤x≤40≤y≤7.8.已知0<a +b<π2,-π2<a -b<π3,求2a 和3a -b 3的取值范围. [解析] ∵⎩⎨⎧ 0<a +b<π2-π2<a -b<π3,两式相加得-π2<2a<5π6.设3a -b3=m(a +b)+n(a -b)=a(m +n)+b(m -n),则有⎩⎪⎨⎪⎧ m +n =3m -n =-13,解得m =43,n =53.∴3a -b 3=43(a +b)+53(a -b). ∴⎩⎨⎧0<43a +b <2π3-5π6<53a -b <5π9, 两式相加,得-5π6<3a -b 3<11π9.故2a ∈(-π2,5π6),3a -b 3∈(-5π6,11π9).。
一、选择题1.已知2244x y +=,则2211x y+的最小值为( ) A .52B .9C .1D .942.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.若关于x 的不等式2220x x c -+<的解集为(),a b ,则14a b+的最小值为( ) A .9B .9-C .92D .92-4.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .45.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( )A .16B .25C .36D .49 6.若,x y 满足条件11x yx y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-57.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( ) A .2B .1CD .8.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .59.若直线l :()200,0ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则21a b+的最小值为( ) A .2B .4CD.10.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .211.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 12.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<二、填空题13.已知实数x ,y 满足约束条件010x y x y x -≤⎧⎪+≤⎨⎪⎩,则23x y z +=的最大值__________.14.已知函数2()4f x x =+,()g x ax =,当[]1,4x ∈时,()f x 的图象总在()g x 图象的上方,则a 的取值范围为_________.15.已知圆1C :()224x a y ++=和圆2C :()2221x y b +-=(,a b ∈R ,且0ab ≠),若两圆外切,则2222a b a b+的最小值为______.16.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 17.已知2z y x =-,式中变量x ,y 满足下列条件:213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为______.18.已知11()2x x f x e e a --=++只有一个零点,则a =____________. 19.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.20.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.随着信息技术的发展,网络学习成为一种重要的学习方式,现某学校利用有线网络同时提供A 、B 两套校本选修课程.A 套选修课每次播放视频40分钟,课后研讨20分钟,可获得学分5分;B 套选修课每次播放视频30分钟,课后研讨40分钟,可获得学分4分.全学期20周,网络对每套选修课每周开播两次(A 、B 两套校本选修课程同时播放),每次均为独立内容.学校规定学生每学期收看选修课视频时间不超过1400分钟,研讨时间不得少于1000分钟.A 、B 两套选修课各选择多少次才能使获得学分最高,获得的最高学分是多少?23.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 24.已知函数()()231f x x a x b =-++.(1)当1a =,5b =-时,解不等式()0f x >;(2)当222b a a =+时,解关于x 的不等式()0f x <(结果用a 表示).25.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入90万元安装了一台新设备,并立即进行生产,预计使用该设备前(N )n n +∈年的材料费、维修费、人工工资等共为(2552n n +)万元,每年的销售收入55万元.设使用该设备前n 年的总盈利额为()f n 万元.(1)写出()f n 关于n 的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由.26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后应用基本不等式可得最小值. 【详解】由题意22222211111(4)4x y x y x y ⎛⎫+=++ ⎪⎝⎭2222141955444y x x y ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当且仅当22224y x x y =,即2242,33x y ==时等号成立.故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】 作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.C解析:C 【分析】由韦达定理可得出2a b +=,2ab c =,分析出a 、b 均为正数,将代数式()12a b +与14a b +相乘,展开后利用基本不等式可求得14a b +的最小值. 【详解】由于代数式14a b+有意义,则0ab ≠, 因为关于x 的不等式2220x x c -+<的解集为(),a b ,则a 、b 为方程2220x x c -+=的两根, 由韦达定理可得220a b ab c +=⎧⎨=>⎩,所以,a 、b 均为正数, 所以,()14114141495522222a b a b a b a b a b b a b a ⎛⎛⎫⎛⎫+=++=++≥+⋅= ⎪ ⎪ ⎝⎭⎝⎭⎝.当且仅当242,,33b a a b ===时,等号成立,因此,14a b +的最小值为92. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.D解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-, 由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值, 又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.A解析:A 【分析】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到: 4164164416(1)216(1)161111111a a a ab a a a a +=+=+-≥⋅-=------- 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A 【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.6.A解析:A 【解析】作出不等式组11x yx y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫---⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.D解析:D 【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可. 详解:由题得:因为a 2+ac+ab+bc=2, ∴(a+b )(a+c )=2,又a ,b ,c 均为正实数, ∴2a+b+c=(a+b )+(a+c )≥2()()a b a c ++=22, 当且仅当a+b=a+c 时,即b=c 取等号. 故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.8.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.9.B解析:B 【分析】求出圆的圆心与半径,可得圆心在直线20(0,0)ax by a b -+=>>上,推出22a b +=,利用基本不等式转化求解21a b+取最小值. 【详解】解:圆222410x y x y ++-+=,即22(1)(2)4x y ++-=,表示以2()1,M -为圆心,以2为半径的圆,由题意可得圆心在直线20(0,0)ax by a b -+=>>上, 故220a b --+=,即22a b +=,∴2212222112242a ba b b a b a b a b a b a +++=+=++++, 当且仅当22b aa b=,即2a b =时,等号成立, 故选:B . 【点睛】本题考查直线与圆的方程的综合应用,基本不等式的应用,考查转化思想以及计算能力,属于中档题.10.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.11.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 12.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的二、填空题13.【分析】先作出不等式组对应的可行域再通过数形结合求出的最大值即得解【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域设它表示斜率为纵截距为的直线系要求的最大值即求的最大值当直线经过点时直线 解析:9【分析】先作出不等式组对应的可行域,再通过数形结合求出2x y +的最大值即得解. 【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域,设12,22m m x y y x =+∴=-+,它表示斜率为12-,纵截距为2m的直线系, 要求23x y z +=的最大值即求m 的最大值.当直线122m y x =-+经过点(0,1)A 时,直线的纵截距2m最大,m 最大. 此时max 022m =+=, 所以23x y z +=的最大值为239=. 故答案为:9 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案。
1.2 不等关系与不等式1.比较实数a ,b 的大小 (1)文字叙述如果a -b 是正数,那么a____b ; 如果a -b 等于____,那么a =b ;如果a -b 是负数,那么a____b ,反之也成立. (2)符号表示 a -b>0⇔a____b ; a -b =0⇔a____b ; a -b<0⇔a____b.2.常用的不等式的基本性质 (1)a>b ⇔b____a(对称性); (2)a>b ,b>c ⇒a____c(传递性); (3)a>b ⇒a +c____b +c(可加性);(4)a>b ,c>0⇒ac____bc ;a>b ,c<0⇒ac____bc ; (5)a>b ,c>d ⇒a +c____b +d ; (6)a>b>0,c>d>0⇒ac____bd ; (7)a>b>0,n ∈N ,n≥2⇒a n ____b n ; (8)a>b>0,n ∈N ,n≥2⇒na____n b.一、选择题1.若a ,b ,c ∈R ,a>b ,则下列不等式成立的是( ) A.1a <1bB .a 2>b 2 C.a c 2+1>bc 2+1D .a|c|>b|c| 2.已知a<0,b<-1,则下列不等式成立的是( ) A .a>a b >a b 2 B.a b 2>a b >aC.a b >a>a b 2D.a b >a b 2>a 3.已知a 、b 为非零实数,且a<b ,则下列命题成立的是( )A .a 2<b 2B .a 2b<ab 2 C.1ab 2<1a 2b D.b a <a b 4.若x ∈(e-1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a<b<cB .c<a<bC .b<a<cD .b<c<a 5.设a ,b ∈R ,若a -|b|>0,则下列不等式中正确的是( ) A .b -a>0 B .a 3+b 3<0 C .a 2-b 2<0 D .b +a>0 6.若a>b>c 且a +b +c =0,则下列不等式中正确的是( ) A .ab>ac B .ac>bc C .a|b|>c|b| D .a 2>b 2>c 2 二、填空题7.若1≤a≤5,-1≤b≤2,则a -b 的取值范围为___________________________. 8.若f(x)=3x 2-x +1,g(x)=2x 2+x -1,则f(x)与g(x)的大小关系是________. 9.若x ∈R ,则x 1+x 2与12的大小关系为________. 10.设n>1,n ∈N ,A =n -n -1,B =n +1-n ,则A 与B 的大小关系为________. 三、解答题11.设a>b>0,试比较a 2-b 2a 2+b 2与a -b a +b 的大小.12.设f(x)=1+log x 3,g(x)=2log x 2,其中x >0且x≠1,试比较f(x)与g(x)的大小.能力提升13.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.1214.设x ,y ,z ∈R ,试比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.1.比较两个实数的大小,只要考察它们的差就可以了. a -b>0⇔a>b ;a -b =0⇔a =b ;a -b<0⇔a<b. 2.作差法比较的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“积”;第三步:定号,就是确定作差的结果是大于0,等于0,还是小于0.(不确定的要分情况讨论) 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,千万不可想当然.1.2 不等关系与不等式答案知识梳理1.(1)> 0 < (2)> = < 2.(1)< (2)> (3)> (4)> < (5)> (6)> (7)> (8)>作业设计1.C [对A ,若a>0>b ,则1a >0,1b <0,此时1a >1b ,∴A 不成立;对B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对C ,∵c 2+1≥1,且a>b ,∴a c 2+1>bc 2+1恒成立,∴C 正确;对D ,当c =0时,a|c|=b|c|,∴D 不成立.]2.D [取a =-2,b =-2,则a b =1,a b 2=-12,∴a b >ab 2>a.]3.C [对于A ,当a<0,b<0时,a 2<b 2不成立;对于B ,当a<0,b>0时,a 2b>0,ab 2<0,a 2b<ab 2不成立; 对于C ,∵a<b ,1a 2b2>0,∴1ab 2<1a 2b; 对于D ,当a =-1,b =1时,b a =ab =-1.]4.C [∵1e <x<1,∴-1<ln x<0.令t =ln x ,则-1<t<0. ∴a -b =t -2t =-t>0,∴a>b. c -a =t 3-t =t(t 2-1)=t(t +1)(t -1), 又∵-1<t<0,∴0<t +1<1,-2<t -1<-1, ∴c -a>0,∴c>a.∴c>a>b.]5.D [由a>|b|得-a<b<a ,∴a +b>0,且a -b>0.∴b -a<0,A 错,D 对.a 3+b 3=(a +b)(a 2-ab +b 2)=(a +b)[(a -b 2)2+34b 2]∴a 3+b 3>0,B 错.而a 2-b 2=(a -b)(a +b)>0,∴C 错.]6.A [由a>b>c 及a +b +c =0知a>0,c<0,又∵a>0,b>c ,∴ab>ac.] 7.[-1,6]解析 ∵-1≤b≤2,∴-2≤-b≤1,又1≤a≤5,∴-1≤a -b≤6. 8.f(x)>g(x)解析 ∵f(x)-g(x)=x 2-2x +2=(x -1)2+1>0,∴f(x)>g(x).9.x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x2+x 2=--2+x 2≤0,∴x 1+x 2≤12.10.A>B 解析 A =1n +n -1,B =1n +1+n.∵n +n -1<n +1+n ,并且都为正数, ∴A>B.11.解 方法一 作差法 a 2-b 2a 2+b 2-a -ba +b =+2-b 2--2+b 22+b 2+=-+2-2+b22+b 2+=-+2+b 2∵a>b>0,∴a +b>0,a -b>0,2ab>0.∴-+2+b 2>0,∴a 2-b 2a 2+b 2>a -ba +b.方法二 作商法∵a>b>0,∴a 2-b 2a 2+b 2>0,a -ba +b>0. ∴a 2-b 2a 2+b 2a -b a +b =+2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2ab a 2+b 2>1. ∴a 2-b 2a 2+b 2>a -b a +b. 12.解 f(x)-g(x)=1+log x 3-2log x 2=log x 3x4, ①当⎩⎪⎨⎪⎧ 0<x <1,3x 4>1,或⎩⎪⎨⎪⎧x >1,0<3x 4<1,即1<x <43时,log x 3x4<0,∴f(x)<g(x);②当3x 4=1,即x =43时,log x 3x4=0,即f(x)=g(x);③当⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1,或⎩⎪⎨⎪⎧x >1,3x 4>1,即0<x <1,或x >43时,log x 3x4>0,即f(x)>g(x).综上所述,当1<x <43时,f(x)<g(x);当x =43时,f(x)=g(x);当0<x <1,或x >43时,f(x)>g(x).13.A [特殊值法.令a 1=14,a 2=34,b 1=14,b 2=34,则a 1b 1+a 2b 2=1016=58,a 1a 2+b 1b 2=616=38,a 1b 2+a 2b 1=616=38,∵58>12>38,∴最大的数应是a 1b 1+a 2b 2.] 14.解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1 =(2x -1)2+(x -y)2+(z -1)2≥0, ∴5x 2+y 2+z 2≥2xy +4x +2z -2, 当且仅当x =y =12且z =1时取到等号.。
高中数学学习材料唐玲出品§1 不等关系(数学北京师大版必修5)建议用时 实际用时满分 实际得分45分钟100分一、选择题(每小题5分,共20分) 1.如果c <b <a ,且ac <0,那么下列不等式中不一定成立的是( )A.ab >acB.c (b -a )>0C. <D.ac (a -c )<02.若1a <1b<0,则下列不等式:①a +b <ab ; ②|a |>|b |;③a <b ;④a 2<b 2中,正确的个数是( )A.1B.2C.3D.43.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A. 1a <1bB.a 2>b 2C. 21a c +>21b c + D.a |c |>b |c |4. 已知1,2∈(0,1),记M =12,N12-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定二、填空题(每小题5分,共20分)5.若1<α<3, <β<2,则α |β|的取值范围是_____________.6.已知a >b >0,c <d <0,则b ac -与a b d-的大7.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc ad >0,则c a db>0; ②若ab >0,c a db>0,则bc ad >0; ③若bc ad >0,c a db>0,则ab >0.其中正确命题的个数是 .8.设命题p :若a >b ,则1< 1,q :若1<0,则ab <0.给出以下三个复合命题:①p ∧q ;②p ∨q ;③p ∧q .其中真命题有 ____________ (填序号). 三、解答题(共60分) 9.(12分)已知f (x ) ,若1≤f (1)≤2,2≤f (2)≤3,求f (3)的范围.10.(12分)已知实数,,满足,,试比较,,的大小.11.(12分)已知a,b,c是不全相等的正数,求证:12.(12分) 已知,,.求证:,,不能都大于14.13.(12分)若二次函数y=f(x)的图像关于y轴对称,且1≤f(1)≤2,3≤f(2)≤4,求f(3)的范围.§1 不等关系(数学北京师大版必修5)答题纸得分:一、选择题题号 1 2 3 4答案二、填空题5. 6. 7. 8.三、解答题9.10.11.12.13.§1 不等关系(数学北京师大版必修5)参考答案一、选择题1 .C 解析:∵ c <b <a ,ac <0,∴ c <0,a >0.∴ b >c ⇒ab >ac ,∴ A 正确. ∵ b -a <0,∴ c (b -a )>0,∴ B 正确. ∵ a >c ,∴2<2;又当b =0时22,∴ C 不一定成立.∵ ac <0,a -c >0,∴ ac (a -c )<0.2.B 解析:∵ 1a <1b<0,∴ b <a <0,∴ a +b <0<ab ,|b |>|a |,∴ a 2<b 2,故①④正确. 3.C 解析:∵ a >b ,c 2+1>0,∴ 21a c +>21bc +.4. B 解析:M N121211121 ,∵1,2∈(0,1),∴1121)>0,∴ M >N .二、填空题5.-3<α-|β|<3 解析:∵ -4<β<2,∴ 0≤|β|<4.∴ -4<-|β|≤0.∴ -3<α-|β|<3.6.b ac - a b d- 解析:由题意知 a >b >0, c > d >0, ∴ a c b d 0,∴ 0 1a c - 1b d -.∵ a b 0,∴ b a c - ab d-.7. 3 解析:由bc ad 0得bc ad ,又ab 0,∴ bc ab ad ab ,即c a d b,∴0,故①正确;由 ,,得ab( ) 0,即bc-ad 0,故②正确;由 >0,得bc ad ab->0,∵ ,∴ ,故③正确.8. ② 解析:∵ p 为假命题,q 为真命题,∴ p ∨q 为真命题.三、解答题9. 解法1:整体代换令f (3)=9a +b = ,则49,1,m n m n +=⎧⎨+=⎩解得5,38.3m n ⎧=-⎪⎪⎨⎪=⎪⎩即.因为1≤a +b ≤2,2≤4a +b ≤3, 所以2≤f (3)≤193,即f (3)的范围是[2,193]. 解法2:巧妙换元令a +b =x ,4a +b =y , 则a =y x -,b =4x y-,1≤x ≤2,2≤y ≤3.因为f (3)=9a +b =853y x-,6≤8y 5x ≤19, 所以2≤f (3)≤193,即f (3)的范围是[2,193].解法3:增元换元 令2,01,34,01,a b t t a b s s =++≤≤⎧⎨=++≤≤⎩解得1,3453t s a t s b -+⎧=⎪⎪⎨-++⎪=⎪⎩.因为0≤t ≤1,0≤s ≤1,且f (3)=9a +b =58143t s -+,所以2≤f (3)≤193,即f (3)的范围是[2,193].10.解:4 42= 2 2≥0,∴ c ≥b .又6 4 3 2,①4 4 2,②由①-②得2 2 22,即12.∵ 12= 12 234 >0,∴ 12>a ,∴ b >a ,∴ c ≥b a .11.证明:∵ (b-c )2≥0,∴ b 2+c 2-2bc ≥0,即b 2+c 2≥2bc.又a >0,∴ a (b 2+c 2)≥2abc .同理b (c 2+a 2)≥2abc ,c (a 2+b 2)≥2abc .∵ a ,b ,c 不全相等,∴ 以上三个式子中至少有一个式子取不到等号. 故12. 证明:假设(1-a )b14,(1-b )c 14,(1-c )a 14, 由(1a - b )2≥0,展开得(1)2a b -+≥(1)a b ->12. 同理可得(1)2b c -+>12,(1)2c a -+>12.∴ (1)2a b -++(1)2b c -++(1)2c a -+>32,即32>32,矛盾. ∴ 原结论成立.13. 解:设f (x )=ax 2+c (a ≠0),又∵ f (3)=9a +c ,故设λ1f (1)+λ2f (2)=f (3),则有121249,1,λλλλ+=⎧⎨+=⎩解得125,38,3λλ⎧=-⎪⎪⎨⎪=⎪⎩∴ f (3)=8(2)5(1)3f f -.∵ 1≤f (1)≤2,3≤f (2)≤4, ∴ 5≤5f (1)≤10,24≤8f (2)≤32. ∴ 14≤8f (2) 5f (1)≤27. ∴143≤8(2)5(1)3f f -≤9,即143≤f (3)≤9.。
§1不等关系课时过关·能力提升1.已知a<0,1<b<0,则()A.a>ab>ab2B.ab2>ab>a2 D.ab>ab2>a1<b<0,∴1>b2>0>b>1,即b<b2<1,在两边同乘a(a<0),∴ab>ab2>a.2.已知x>0,y>0,M=x+y2,N=2xyx+y,则M与N的大小关系为()A.M>NB.M≥NC.M≤ND.M<NMN=(x+y)2-4xy2(x+y)=(x-y)22(x+y).∵x>0,y>0,∴x+y>0.又(xy)2≥0,∴MN≥0,即M≥N.3.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式表示就是()A.{x≥95,y≥380,45B.{x≥95,y>380,z≥45C.{x>95,y>380,z>45D.{x≥95,y>380,z>454.已知a,b,c均为实数,有下列命题:①a<b<0,则a2<b2;②ab<c,则a<bc;③a>b,则c2a<c2b;④a>b,则1a <1b.其中,正确的个数是()B.2C.3D.4特殊值法.令a=2,b=1,则4>1,故①错;②当b<0时,有a>bc,故②错;③当a>b时,有2a<2b,从而c2a<c2b,故③正确;④当a>0,b<0时,显然有1a >1b,故④错.综上可知,只有③正确,故选A.5.已知a,b,c∈R,且c≠0,则下列命题正确的是()A.如果a>b,那么ac >bcB.如果ac<bc,那么a<bC.如果a>b,那么1a <1bD.如果a>b,那么ac2>bc2,取a=2,b=1,c=1,满足A,B,C中的条件.对A有ac <bc,故A错;对B有a>b,故B错;对C有1a >1b,故C错;对于D,∵c≠0,∴1c2>0,由不等式的性质知,选项D正确.6.已知0<a<1,x=log a√2+log a√3,y=12log a5,z=log a√21log a√3,则()A.x>y>zB.z>y>xD.z>x>yx,y,z变成同底数的式子,再比较真数的大小,利用对数函数的单调性来分析:.x=log a√2+log a√3=log a√6,y=12log a5=log a√5,z=log a√21log a√3=log a√7,由0<a<1知,函数f(x)=log a x为减函数,故y>x>z.7.已知x≤1,f(x)=3x3,g(x)=3x2x+1,则f(x)与g(x)的大小关系是f(x)g(x).(x)g(x)=3x3(3x2x+1)=(3x33x2)+(x1)=3x2(x1)+(x1)=(x1)(3x2+1).∵x≤1,∴x1≤0.又3x2+1>0,∴(x1)(3x2+1)≤0.∴f(x)≤g(x).8.已知1<2x1<1,则2x1的取值范围是.+∞)9.设角α,β满足π2<α<β<π2,则αβ的范围为.,要注意α<β这个条件.∵π2<α<π2,π2<β<π2,∴π<αβ<π.∵α<β,∴αβ<0.故π<αβ<0.π,0)10.某商城的某店准备在“双十一”期间进行商品降价酬宾活动,酬宾方案如下:(1)购买100元以下的商品打九折;(2)购买超过100元(含100元)但不超过500元的商品,前100元部分打九折,超过100元部分打八折;(3)购买超过500元(含500元)的商品,前500元部分按方案(2)打折,剩余部分打七五折.某人打算在该店购买x元商品,且希望得到至少200元的优惠,则x所满足的条件是.100元最多优惠10元,不超过500元最多优惠10+80=90元,因此要得到200元的优惠,肯定要超过500元,因此x所满足的条件是90+0.25(x500)≥200.+0.25(x500)≥20011.若a≠1,且a∈R,试比较11+a与1a的大小.因为11+a (1a)=a21+a,所以当a>1,且a≠0时,11+a>1a;当a<1时,11+a<1a;当a=0时,11+a=1a.★12.已知三个不等式:①ab>0,②ca >db,③bc>ad.以其中的两个作为条件,余下的一个作为结论,写出所有能成立的不等式命题,并证明.,然后再证明每个命题是否正确.,余下的一个作为结论,共有三个命题,依次是①②⇒③;②③⇒①;①③⇒②.(1)∵ca −db=bc-adab>0,ab>0,∴bcad>0,即bc>ad.故命题①②⇒③是正确的.(2)∵ca −db=bc-adab>0,且bc>ad,∴ab>0.故命题②③⇒①是正确的.(3)∵ca −db=bc-adab,且ab>0,bc>ad,∴bc-adab >0,即ca−db>0,即ca >db.故命题①③⇒②是正确的.综上所述,命题①②⇒③,②③⇒①,①③⇒②都是正确的.。
第三章 不等式§1 不等关系1.1 不等关系1.2 不等关系与不等式(一)双基达标 (限时20分钟)1.设M =4+x 2,N =4x ,则M 与N 的大小关系为 ( ).A .M ≥NB .M =NC .M ≤ND .与x 有关解析 ∵M -N =4+x 2-4x =(x -2)2≥0.∴M ≥N .答案 A2.某高速公路对行驶的各种车辆的最大限速为120 km/h.行驶过程中,同一车道上的车间距d 不得小于10 m ,用不等式表示为 ( ).A .v ≤120(km/h)或d ≥10(m.)B.⎩⎪⎨⎪⎧v ≤120(km/h )d ≥10(m ) C .v ≤120(km/h)D .d ≥10(m)解析 最大限速与车距是同时的,故选B.答案 B3.若a ∈R ,且a 2+a <0,则a ,a 2,-a ,-a 2的大小关系是 ( ).A .a 2>a >-a 2>-aB .-a >a 2>-a 2>aC .-a >a 2>a >-a 2D .a 2>-a >a >-a 2解析 由a 2+a <0得-a 2>a 可排除A 、C 、D ,故选B.答案 B4.若a >0,b >0,则1a +1b 与1a +b的大小关系是________. 解析 ∵1a +1b -1a +b =(a +b )2-ab ab (a +b )=a 2+ab +b 2ab (a +b )>0, ∴1a +1b >1a +b. 答案 1a +1b >1a +b5.大桥桥头竖立的“限重40吨”的警示牌是指示司机要安全通过该桥,应使车和货的总重量T (吨)满足的关系为________.解析 由生活常识易知:T ≤40.答案 T ≤40.6.已知a >0,b >0,试比较a b +b a 与a +b 的大小. 解 ⎝⎛⎭⎫a b +b a -(a +b )=⎝⎛⎭⎫a b -b +⎝⎛⎭⎫b a -a = a -b b +b -a a =(a -b )(a -b )ab =(a -b )2(a +b )ab, ∵a >0,b >0,∴a +b >0,ab >0,(a -b )2≥0. ∴(a -b )2(a +b )ab≥0,当且仅当a =b 时等号成立. ∴a b +b a≥a +b (当且仅当a =b 时取等号). 综合提高(限时25分钟)7.完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x 人,瓦工y 人,则请工人满足的关系式是 ( ).A .5x +4y <200B .5x +4y ≥200C .5x +4y =200D .5x +4y ≤200解析 依题意得50x +40y ≤2 000,即5x +4y ≤200.答案 D8.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是 ( ).A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c |解析 (1)特值法 令a =1,b =-2,c =0,代入A ,B ,C ,D 中,可知A ,B ,D 均错.故 选C.(2)直接法 ∵a >b ,c 2+1>0,∴a c 2+1>bc 2+1. 答案 C9.某工厂八月份的产量比九月份的产量少;甲物体比乙物体重;A 容器不小于B 容器的容积.若前一个量用a 表示,后一个量用b 表示,则上述事实可表示为________;________;________.解析 由题意易知三个不等关系用不等式可分别表示为a <b ,a >b ,a ≥b .答案 a <b a >b a ≥b10.下列不等式:①x 2+3>2x (x ∈R );②a 3+b 3≥a 2b +ab 2(a ,b ∈R );③a 2+b 2≥2(a +b -1)中正确不等式的序号为________.解析 ①中,∵x 2+3-2x =(x -1)2+2>0,∴x 2+3>2x ,故①正确.②中,∵a 3+b 3-(a 2b +ab 2)=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ),虽然(a -b )2≥0,但a +b 的正负无法确定,故②不正确.③中,∵a 2+b 2-2(a +b -1)=a 2+b 2 -2a -2b +2=(a -1)2+(b -1)2≥0,故③正确.答案 ①③11.某工厂生产甲、乙两种产品,已知生产甲种产品1 t 需消耗A 种矿石10 t ,B 种矿石5 t ,煤4 t ;生产乙种产品1 t 需消耗A 种矿石4 t ,B 种矿石4 t ,煤9 t .工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300 t ,B 种矿石不超过200 t ,煤不超过360 t .写出满足上述所有不等关系的不等式.解 设生产甲、乙两种产品分别为x t ,y t ,则 ⎩⎪⎨⎪⎧ 10x +4y ≤300,5x +4y ≤200,4x +9y ≤360,x ≥0,y ≥0.12.(创新拓展)已知-12<a <0,A =1+a 2,B =1-a 2,C =11+a ,D =11-a.试将A ,B ,C ,D 按大小顺序排列.解 ∵-12<a <0,∴不妨取a =-14, 则A =1716,B =1516,C =43,D =45. 由此猜想:D <B <A <C .只需证明C -A >0,A -B >0,B -D >0即可.∵B -D =(1-a 2)-11-a =a 3-a 2-a 1-a=a ⎣⎡⎦⎤⎝⎛⎭⎫a -122-541-a, 又-12<a <0,∴1-a >0.又-1<a -12<-12, ∴14<⎝⎛⎭⎫a -122<1,故⎝⎛⎭⎫a -122-54<0, ∴a ⎣⎡⎦⎤⎝⎛⎭⎫a -122-541-a>0,∴B >D . ∵A -B =(1+a 2)-(1-a 2)=2a 2>0,∴A >B .∵C -A =11+a -(1+a 2)=-a (a 2+a +1)1+a= -a ⎣⎡⎦⎤⎝⎛⎭⎫a +122+341+a, 又1+a >0,-a >0,⎝⎛⎭⎫a +122+34>0, ∴-a ⎣⎡⎦⎤⎝⎛⎭⎫a +122+341+a>0,∴C >A . 综上可得A ,B ,C ,D 四个数的大小顺序是C >A >B >D .。
一、选择题1.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .32.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .43.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-4.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .75.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6546.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .47.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .28.下列函数中,最小值为4的是( )A .4y x x=+B .()4sin 0πsin y x x x=+<<C .e 4e x x y -=+D .y =9.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-10.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21ac +>21b c + D .a |c |>b |c |二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________.15x =______. 16.已知110,0,1x y x y >>+=,则2236x y y xy++的最小值是_________.17.已知变量x,y满足430401x yx yx-+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x yxy+的最大值为______.18.已知x,y满足不等式组220,10,30x yx yx+-≥⎧⎪-+≥⎨⎪-≤⎩,则11xzy-=+,则z的最大值为________. 19.已知实数x,y满足x y10x y20x0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x2y=-的最大值为______.20.已知ABC中,D、E分别为AB、AC的中点,DF tDE=,AF x AB y AC=+,则xy的最大值为________.三、解答题21.某地要建造一条防洪堤,其横断面为等腰梯形,腰与底边所成的角为60°,考虑到防洪堤的坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米,记防洪堤横断面的腰长为x(米),外周长(梯形的上底BC与两腰长的和)为y (米).(1)求y关于x的函数关系式,并指出其定义域;(2)当防洪堤的腰长x为多少米时,断面的外周长y最小?求此时外周长的值.22.已知实数x,y满足不等式组204030x yx yx-+≥⎧⎪+-≥⎨⎪-≤⎩,求目标函数23z x y=-的最值及相应的最优解.23.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为(25-x)万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)24.若不等式2122x x mx-+>的解集为{}|02x x<<.(1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值. 25.设1x >,且4149(1)x x +--的最小值为m .(1)求m ;(2)若关于x 的不等式20ax ax m -+的解集为R ,求a 的取值范围.26.如果x ,y R ∈,比较()222+x y 与()2xy x y +的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344z y x =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).2.A解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A , 220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方, 由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min22444z a a ⎛⎫== ⎪++⎝⎭, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.3.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小,又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=⋅++,将问题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.4.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0)当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6; 故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=.因为11611161161()()(17)17)5555n m m n m n m n m n +=++=++≥=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.6.B解析:B 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值. 【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =. 故选:B. 【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题.7.B解析:B 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值. 【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大,此时z 最大.由2x y x =⎧⎨=⎩解得(2,2)B .代入目标函数z x y =+得224z =+=. 即目标函数z x y =+的最大值为4. 故选:B . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.8.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x x y -=+=+≥=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4exxy -=+的最小值为4,故C 项正确;D 项,y =≥=,时,等号成立,所以函数y =D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.9.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤.故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.10.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()22332x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.11.D解析:D 【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围 【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立 即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立 令g (x )=mx 2-mx +m -5,对称轴为12x = 当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0 当m >0时,有g (x ) 开口向上且在[1,3]上单调递增∴在[1,3]上max ()(3)750g x g m ==-<,得507m << 综上,实数m 的取值范围为57m < 故选:D 【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围12.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的; 当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.二、填空题13.【分析】由已知条件得出由得出可得出利用基本不等式可求得所求代数式的最小值【详解】已知实数均为正实数且可得所以可得令则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最解析:13- 【分析】 由已知条件得出43y x =,2443z x x =-,由0z >得出03x <<,可得出71143x y x y t z t ++-=+-,利用基本不等式可求得所求代数式的最小值. 【详解】已知实数x 、y 、z 均为正实数,且3z x y +=,4zy x+=,可得34z y xy x xy =-=-,43y x ∴=,所以,2443z x x =-,()2717134343343xx y x y x x z x x x +∴+-=-=---,()24443033z x x x x =-=->,可得03x <<,令()30,3t x =-∈,则3x t =-,所以,()()71717131114334343x y x y x t t z x t t ++-=-=--=+-≥=--.当且仅当2t =时,等号成立, 因此,x y x y z ++-的最小值为13-.1-. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】根据一元二次不等式的解集求得的关系再根据均值不等式求得最小值【详解】因为的解集为得得又所以所以由均值不等式得所以当时取等号故的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点解析:【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值. 【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥=, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++()6b cb c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点.15.4【分析】将所给式子变形为然后利用基本不等式求解即可【详解】因为所以当且仅当即时等号成立故答案为:4【点睛】关键点睛:此题的解题关键是将所给式子变形为从而满足基本不等式成立的条件最后计算求解解析:4 【分析】11=+-,然后利用基本不等式求解即可. 【详解】11≥,111615=-≥=-=,1=4x =时,等号成立. 故答案为:4. 【点睛】11,从而满足基本不等式成立的条件,最后计算求解.16.【分析】由题得化简整理得再利用基本不等式可得解【详解】由得则当且仅当时等号成立此时或;则的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一 解析:11【分析】由题得1x yx y xy xy+=⇒+=,化简整理得()2223636361xy xy x y y xy xy xy xy-+++==+-再利用基本不等式可得解.【详解】 由110,0,1x y x y>>+=,得1x yx y xy xy+=⇒+=, 则()2223636x y x y x y y xy xy+++++=()2223636x y xy x xy y xy xy+-++++==()236361111xy xy xy xy xy -+==+-≥=,当且仅当6xy =时等号成立,此时33x y ⎧=+⎪⎨=⎪⎩33x y ⎧=-⎪⎨=+⎪⎩则2236x y y xy++的最小值是11.故答案为:11. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.17.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】作出可行域,令y t x =,OA OB y k k x ≤≤,所以7,313t ⎡⎤∈⎢⎥⎣⎦,22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值. 【详解】由43040x y x y -+=⎧⎨+-=⎩解得:13575x y ⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A ⎛⎫ ⎪⎝⎭,由140x x y =⎧⎨+-=⎩解得:13x y =⎧⎨=⎩,所以()1,3B ,y x 表示可行域内的点与原点连线的斜率,所以OA OB yk k x ≤≤, 775131305OAk -==-,30310OB k -==-,令7,313y t x ⎡⎤=∈⎢⎥⎣⎦,所以22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t =时,1713109213791y ⎛⎫=+=⎪⎝⎭, 当75t=时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53,故答案为:53. 【点睛】 思路点睛:非线性目标函数的常见类型及解题思路:1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的ac倍;2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)2222Ax By C z Ax By C A B A B++=++=+⋅+表示的是可行域内的点(),x y 到直线0Ax By C ++=的距离的22A B +倍.18.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常解析:4 【分析】 先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求. 【详解】作出可行域如图所示,11x z y -=+可以看做1PM k ,其中()1,1P -,M 为可行域(阴影区域)内一点, 因为()1121PA k --==-,()0.511314PA k ---==-, 所以(]1,2,4PM k ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PMk ∈,所以z 的最大值为4, 故答案为:4.【点睛】结论点睛:常见的非线性目标函数的几何意义: (1)y bz x a-=-:表示点(),x y 与点(),a b 连线的斜率; (2)()()22z x a y b =-+-:表示点(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C ++=距离的22A B +倍.19.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.20.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.三、解答题21.(1)1832,(26)2xy BC x x x =+=+≤<;(2)外周长的最小值为米,此时腰长为.【分析】()1由腰与底边所成的角为60︒,求出h x =,182x BC x =-,结合限制条件求出定义域26x ≤<,从而得到y 关于x 的函数关系式()2由()1得1832x y x=+,运用基本不等式求出结果【详解】 (1)()12AD BC h =+,其中32,22xAD BC BC x h x =+⋅=+=∴182xBCx=-由33,26182h xxxBCx⎧=≥⎪⎪≤<⎨⎪=->⎪⎩得∴1832,(26)2xy BC x xx=+=+≤<.(2)18318326322x xyx x=+≥⋅=当且仅当[)183232,62xxx==∈即时等号成立∴外周长的最小值为63米,此时腰长为23米.【点睛】本题是一道函数的应用题,解题时需要理清题目中各数量之间的关系,然后根据题意列出函数表达式,在求最值时一般运用基本不等式来求解,注意等号成立的条件22.在35xy=⎧⎨=⎩时,取得最小值min9z=-,在31xy=⎧⎨=⎩时,取得最大值max3z=.【分析】作出可行域,作出目标函数对应的直线,平移直线可得最优解.【详解】作出可行域,如图ABC内部(含边界),由2=030x yx-+⎧⎨-=⎩得()3A,5,由+4=030x yx-⎧⎨-=⎩得()31B,,由2=0+40x yx y-+⎧⎨-=⎩得()13C,,作直线:230l x y-=,向上平移直线l,z减小,当l过点()3A,5时,z取得最小值23359⨯-⨯=-;向下平移直线l,z增大,当l过点()31B,时,z取得最大值23313⨯-⨯=;所以目标函数23z x y=-在35xy=⎧⎨=⎩时,取得最小值min9z=-,在31xy=⎧⎨=⎩时,取得最大值max3z=.【点睛】本题考查简单的线性规划问题,解题方法是作出可行域,作出线性目标函数对应的直线,平移直线求得最优解,如果目标函数不是线性的,则可根据其几何意义求解,如直线的斜率、两点间的距离等,属于中档题.23.(1)3.(2)5.【解析】试题分析:(1)求出第年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入-总支出,可得平均利润,利用基本不等式,可得结论.试题(1)设大货车运输到第年年底,该车运输累计收入与总支出的差为万元, 则由,可得 ∵,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入−总支出,∴二手车出售后,小张的年平均利润为, 当且仅当时,等号成立 ∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.考点:根据实际问题选择函数类型, 基本不等式24.(1)1;(2)9.【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值;(2)先求得141b a +=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值.【详解】(1)不等式2122x x mx -+>可化为21(2)02x m x +-<, 即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --,又不等式的解集为{|02}x x <<,所以2(2)2m --=,解得1m =;(2)由正实数a ,b 满足4a b mab +=,所以4a b ab +=,所以141b a+=,所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号,所以+a b 的最小值为9.【点睛】 本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 25.(1)47=m ;(2)160,7⎡⎤⎢⎥⎣⎦; 【分析】(1)直接利用基本不等式即可求得4149(1)x x +--的最小值; (2)不等式20ax ax m -+的解集为R ,分0a =与0a ≠进行分类讨论,再结合二次函数的图象与性质列不等式求解即可.【详解】解:(1)因为1x >,所以10x ->, 所以444411249(1)49(1)497x x x x +-=-+=--, 当且仅当4149(1)x x -=-,即217x -=,也即97x =时等号成立, 故47=m . (2)由(1)知4,7m =, 若不等式2407ax ax -+ 的解集为R ,则 当0a = 时,407恒成立,满足题意; 当0a ≠时,201607a a a >⎧⎪⎨∆=-⎪⎩, 解得1607a<, 综上,1607a , 所以a 的取值范围为160,7⎡⎤⎢⎥⎣⎦. 【点睛】 本题考查基本不等式的应用,二次函数的图象及其性质,主要考查学生逻辑推理能力和计算能力,属于中档题.26.()()2222x y xy x y ≥++,当且仅当x y =时等号成立 【分析】 运用作差比较法,结合配方法进行比较大小即可.【详解】()()()2222442224433222x y xy x y x y x y xy x xy y x y x y xy +-++--++=+--= ()()()()()()()2223333222324y x x y y y x x y x y x y x xy y x y x y ⎡⎤⎛⎫=-+-=--=-++=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()20x y -≥,223024y x y ⎛⎫++≥ ⎪⎝⎭,()2223024y x y x y ⎡⎤⎛⎫∴-++≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.()()2222x y xy x y ∴≥++,当且仅当x y =时等号成立.【点睛】本题考查了用作差比较法进行比较两个多项式的大小,考查了配方法的应用,属于中档题.。
陕西省吴堡县吴堡中学高中数学第三章不等关系与不等式1典型例题素材北师大版必修5【例1】已知a<b<0,判断下列不等式是不是成立.(1); (2);(3)|a|>|b|; (4)a2>b2; (5); (6).【例2】设f(x)=ax2+bx且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.参考答案例1【分析】综合利用不等式的诸种性质判断.【解】(1)∵a<b<0,∴ab>0.即>0a·成立.(2)取a=-2,b=-1,则a-b=-1,则不成立.(3)∵a<b<0,∴-a>-b>0|a|>|b|>0成立.(4)将-a>-b>0平方得:a2>b2>0成立.(5)由(3)知|a|>|b|>0成立成立不成立.而可正可负,故原不等式不成立.【点拨】肯定命题须证明,否定结论举反例.对(6),利用的方式是:作差→分解因式→判断符号.例2【分析】∵f(-1)=a-b,f(1)=a+b,而1≤a-b≤2,2≤a+b≤4,又a+b与a-b中的a、b不是独立的,而是彼此制约的,因此,若将f(-2)用a-b和a+b表示则问题得解.【解】设f(-2)=m·f(-1)+nf(1),(m,n为待定系数),则4a-2b=m(a-b)+n(a+b),即:4a-2b=(m+n)a-(m-n)b比较两边a、b的系数得方程:解之得∴f(-2)=3f(-1)+f(1),∵1≤f(-1)≤2,2≤f(1)≤4,∴5≤3f(-1)+f(1)≤10,故5≤f(-2)≤10.【点拨】利用不等式求范围,要注意“度”的把握,过度的放、缩,容易犯错.。
§1不等关系
课后篇巩固探究
A组
1.大桥桥头竖立的“限重40吨”的警示牌,是指示司机要安全通过该桥,应使车和货的总重量
T(吨)满足关系为()
B.T>40
A.T<40
D.T≥40
C.T≤40
答案:C
2.把下列各题中的“=”全部改成“<”,结论仍然成立的是()
A.如果a=b,c=d,那么a-c=b-d
B.如果a=b,c=d,那么ac=bd
C.如果a=b,c=d,且cd≠0,那么
D.如果a=b,那么a3=b3
解析:由不等式性质知只有D选项仍然成立,即若a<b,则a3<b3.
答案:D
3.若a>b,则下列各式正确的是()
B.ax2>bx2
A.a lg x>b lg x
D.a·2x>b·2x
C.a2>b2
解析:对任意的x,2x>0.又因为a>b,所以a·2x>b·2x.
答案:D
4.若a>b>c,则的值为()
B.负数
A.正数
D.非负数
C.非正数
解析:因为a>b>c,所以b-c>0,c-a<0,b-a<0.
所以>0.
答案:A
5.若α,β满足-<α<β<,则2α-β的取值范围是()
A.-π≤2α-β<0
B.-π<2α-β<π
C.-<2α-β<
D.0<2α-β<π
解析:由-<α<β<,得-π<α-β<0,-<α<.
所以-<α+(α-β)<,
即-<2α-β<.
答案:C
6.若1<a<3,-4<b<2,则a-|b|的取值范围是.
解析:因为-4<b<2,所以0≤|b|<4,
所以-4<-|b|≤0.
又因为1<a<3,所以-3<a-|b|<3.
答案:(-3,3)
7.已知1<a<b,比较大小:log a b log b a(填“>”“<”或“=”).
解析:log b a=,因为1<a<b,所以log a b>1.
所以log b a<1,
所以log a b>log b a.
答案:>
8.导学号33194055已知a>b>c>d>0,且a,b,c,d成等差数列,则lg,lg,lg的
大小顺序为.
解析:因为a,b,c,d成等差数列,
所以2b=a+c,2c=b+d.
所以=-<0.
所以.
同理,所以0<,
所以lg<lg<lg.
答案:lg<lg<lg。