2018年高三数学二轮专题复习:考纲解读与数列
- 格式:docx
- 大小:153.21 KB
- 文档页数:6
专题02数列一、数列1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集)为定义域的函数a n =f (n ),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.2.数列的分类 按项数分类无穷数列项数无限 3.数列的两种常用的表示方法(1)通项公式:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 4.已知数列{a n }的前n 项和S n ,则11,1,2n nn S n a S S n -=⎧=⎨-≥⎩二、等差数列1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *).(2)等差数列的前n 项和公式 11()(1)22n n n a a n n S na d +-==+(其中*N n ∈,1a 为首项,d 为公差,n a 为第n 项) 3.等差数列的有关性质已知数列{a n }是等差数列,S n 是{a n }的前n 项和.(1)若m +n =p +q (m ,n ,p ,*N q ∈),则有a m +a n =a p +a q .(2)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.(3)若{a n }是等差数列,公差为d ,则*2,,,(,N )k k m k m a a a k m ++⋅⋅⋅∈是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.4.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).5.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.三、等比数列1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数),或a n +1a n=q (*N n ∈,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab .2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1qn -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q 1-q. 3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)若k +l =m +n (k ,l ,m ,*N n ∈),则有a k ·a l =a m ·a n .(2)等比数列{a n }的单调性:当q >1,a 1>0或0<q <1,a 1<0时,数列{a n }是递增数列;当q >1,a 1<0或0<q <1,a 1>0时,数列{a n }是递减数列;当q =1时,数列{a n }是常数列.(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为mq .(4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为n q .四、求数列的前n 项和的方法1.公式法①等差数列的前n 项和公式 11()(1)22n n n a a n n S na d +-==+ ②等比数列的前n 项和公式(ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q. 2.分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.3.裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .4.倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.5.错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.。
2018届高三第二轮复习——数列第1讲等差、等比考点【高 考 感 悟】从近三年高考看,高考命题热点考向可能为:1.必记公式(1)等差数列通项公式:a n =a 1+(n -1)d . (2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d2.(3)等比数列通项公式:a n a 1qn -1.(4)等比数列前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).(5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2). (7)数列{a n }的前n 项和与通项a n 之间的关系:a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).2.重要性质(1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m qn -m.(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1<0且q >1,则数列为递减数列. 3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .【 真 题 体 验 】1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172 B.192C .10D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.183.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________.4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和.【考 点 突 破 】考点一、等差(比)的基本运算1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .考点二、等差(比)的证明与判断【典例1】( 2017·全国1 )记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
2018年高三数学二轮专题复习:考纲解读与数列
考纲原文
1.数列的概念和简单表示法
(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).
(2)了解数列是自变量为正整数的一类函数.
2.等差数列、等比数列
(1)理解等差数列、等比数列的概念.
(2)掌握等差数列、等比数列的通项公式与前n项和公式.
(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
(4)了解等差数列与一次函数、等比数列与指数函数的关系.
名师解读
与2017年考纲相比没什么变化,而且这部分内容作为高考的必考内容,在2018年的高考中预计仍会以“两小或一大”的格局呈现.
如果是以“两小”(选择题或填空题)的形式呈现,一般是一道较容易的题,一道中等难度的题,较易的题主要以等差数列、等比数列的定义、通项公式、性质与求和公式为主来考查;中等难度的题主要以数列的递推关系、结合数列的通项、性质以及其他相关知识为主来考查. 如果是以“一大”(解答题)的形式呈现,主要考查从数列的前n项和与第n项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项,前n项和,有时与参数的求解,数列不等式的证明等加以综合.试题难度中等.
样题展示
考向一等差数列及其前n项和
样题1 若等差数列满足递推关系,则
A.B.
C.D.
【答案】B
样题 2 已知数列是公差为正数的等差数列,其前项和为,且,.
(1)求数列的通项公式;
(2)数列满足,.
①求数列的通项公式;
②是否存在正整数,(),使得,,成等差数列?若存在,求出,
的值;若不存在,请说明理由.
【解析】(1)设数列的公差为,则.
由,,得,
解得或(舍去).
所以.
(2)①因为,,所以,
,
即,,…,(),累加得,
所以,
也符合上式,
故,.
考向二等比数列及其前n项和
样题3 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,此日脚痛减一半,六朝才得到其关,要见此日行数里,请公仔仔细算相还”,其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问第二天走了
A.96里B.48里
C.192 里D.24里
【答案】A
样题4 已知数列的前项和为,且满足,.
(1)证明:是等比数列;
(2)若,求的最小值.
【解析】(1)因为,所以,
所以,而,
所以是以6为首项,2为公比的等比数列.
(2)由(1)得,,
∴,由,得,
因为,所以时,的最小值为5.
考向三数列的综合应用
样题5 等差数列的公差是2,若成等比数列,则的前项和A.B.
C.D.
【答案】A
样题6已知各项均不相等的等差数列满足,且成等比数列.(1)求数列的通项公式;
(2)若,求数列的前项和.
【解析】(1)设等差数列的公差为,
由题意得,即,
解得或(舍去),
所以.
(2)由,可得
,当为偶数时,
.
当为奇数时,为偶数,于是
.
样题7 (2017山东文科)已知是各项均为正数的等比数列,且.(1)求数列的通项公式;
(2)为各项非零的等差数列,其前n项和S n,已知,求数列的前n项和.。