学科网2020年中考数学第一次模拟考试(山东)-数学(A4全解全析版)
- 格式:doc
- 大小:683.81 KB
- 文档页数:20
2020年中考数学第一次模拟考试【山东卷】数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是A.8 B.18C.18-D.-82.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为A.30.210-⨯B.40.210-⨯C.3210-⨯D.4210-⨯3.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是A.B.C.D.4.在下列图形中是轴对称图形的是A.B.C.D.5.如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,已知∠ADE=65°,则∠CFE的度数为A.60°B.65°C.70°D.75°6.若分式12x+在实数范围内有意义,则实数x的取值范围是A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣27.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是A.2、40 B.42、38 C.40、42 D.42、408.如图,AB为⊙O的直径,点C在⊙O上,∠A=40°,则∠B的度数为A.65°B.50°C.130°D.80°9.一元二次方程22x5x10-+=的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C 处测得山顶部A 的仰角为30度,在爬山过程中,每一段平路(CD 、EF 、GH )与水平线平行,每一段上坡路(DE 、FG 、HA )与水平线的夹角都是45度,在山的另一边有一点B (B 、C 、D 同一水平线上),斜坡AB 的坡度为2:1,且AB 长为9005,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C 出发到坡顶A 的时间为(图中所有点在同一平面内2≈1.41,3≈1.73)A .60分钟B .70分钟C .80分钟D .90分钟 11.如图,在Rt ABC △中,AB AC =,4BC =,AG BC ⊥于点G ,点D 为BC 边上一动点,DE BC⊥交射线CA 于点E ,作DEC V 关于DE 的轴对称图形得到DEF V ,设CD 的长为x ,DEF V 与ABG V 重合部分的面积为y .下列图象中,能反映点D 从点C 向点B 运动过程中,y 与x 的函数关系的是A .B .C .D .12.如图是二次函数y =ax 2+bx +c 图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a ﹣b =0;③4a +2b +c <0;④若(﹣5,y 1),(3,y 2)是抛物线上两点,则y 1<y 2,其中说法正确的是A .①②B .②③C .①②④D .②③④ 第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.分解因式:a 3b –2a 2b +ab =___________.14.小峰抛掷一枚质地均匀硬币两次,则事件“至少出现一次正面朝上”的概率为___________. 15.若一个多边形的内角和为1800°,则这个多边形的对角线条数是___________.16.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图,相交于点P 的两条线段12,l l 分别表示小敏、小聪离B 地的距离()y km 与已用时间()x h 之间的关系,则x =___________时,小敏、小聪两人相距8.4km .17.如图,在△ABC 中,AB =4,若将△ABC 绕点B 顺时针旋转60°,点A 的对应点为点A ′,点C 的对应点为点C ′,点D 为A ′B 的中点,连接A D .则点A 的运动路径¼'AA与线段AD 、A ′D 围成的阴影部分面积是___________.18.如图,正方形ABCD 中,AB 5O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .则线段OF 长的最小值为___________.三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:()004cos3012122+--+-.20.(本小题满分6分)解不等式组3(21)4213213x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩…,并写出x 的所有整数解. 21.(本小题满分6分)如图,在四边形ABCD 中,AD ∥BC ,点O 是对角线AC 的中点,过点O 作AC 的垂线,分别交AD 、BC 于点E 、F ,连接AF 、CE .试判断四边形AECF 的形状,并证明.22.(本小题满分8分)五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.23.(本小题满分8分)如图,AB 是O e 的直径,点C 为»BD的中点,CF 为O e 的弦,且CF AB ⊥,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:BFG CDG∆≅∆;(2)若2AD BE==,求BF的长.24.(本小题满分10分)为了帮助贫困留守儿童,弘扬扶贫济困的传统美德,某校团委在学校举行“送温暖,献爱心”捐款活动,全校2000名学生都积极参与了该次活动.为了解捐款情况,随机调查了该校部分学生的捐款金额,并用得到的数据绘制出如下统计图1和图2,请根据相关信息,解答下列问题:(I)本次接受随机抽样调查的学生人数为_________________,图1中m的值是_________________.(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额超过20元的学生人数.25.(本小题满分10分)如图,直线y=12x与反比例函数y=kx(x>0)的图象交于点A,已知点A的横坐标为4.(1)求反比例函数的解析式;(2)将直线y=12x向上平移3个单位后的直线l与y=kx(x>0)的图象交于点C;①求点C的坐标;②记y =k x (x >0)的图象在点A ,C 之间的部分与线段OA ,OC 围成的区域(不含边界)为W ,则区域W 内的整点(横,纵坐标都是整数的点)的个数为.26.(本小题满分12分)(1)问题发现如图1,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =40°,连接AC ,BD 交于点M . 填空:①AC BD的值为__________;②∠AMB 的度数为__________. (2)类比探究如图2,在△OAB 和△OCD 中,∠AOB =∠COD =90°,∠OAB =∠OCD =30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =7,请直接写出当点C 与点M 重合时AC 的长.27.(本小题满分12分)如图,抛物线26y ax bx =++经过点A (–2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC , (1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.。
2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6÷a2=a3D.2﹣3=﹣6⨯的网格中,A,B均为格点,以点A为圆心,以AB的长为半径3.如图,在33∠的值是()作弧,图中的点C是该弧与格线的交点,则sin BACA .12B .23CD 4.2018的倒数是( )A .2018B .12018C .12018-D .﹣20185.下列平面图形,是中心对称但不是轴对称图形的是( )A .B .C .D . 6.下列计算正确的是( )A .B .C .D .7.如图,直线y +1分别交x 轴、y 轴于点A 、C ,点B 是点A 关于y 的对称点,点D 是线段BC 上一点,把△ABD 沿AD 翻折使AB 落在射线AC 上,得△AB 'D ,则△ABC 与△AB 'D 重叠部分的面积为( )A B .12 C .3 D .36-8.3-的倒数是()A.-3 B.3 C.13-D.139.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°10.如果解关于x的分式方程233x ax x---=5时出现了增根,那么a的值是()A.﹣6B.﹣3C.6D.3二、填空题(共4题,每题4分,共16分)11.Rt△ABC中,∠C=90°,cos A=35,AC=6cm,那么BC等于_____.12.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.若12ADAC=,则AFFG=_____.13.菱形ABCD中,∠B=60°,AB=5,以AC为边长作正方形ACFE,则点D到EF的距离为_____.14.已知圆锥的侧面积是12π,母线长为4,则圆锥的底面圆半径为________.三、解答题(共6题,总分54分)15.如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面积为2,反比例函数y=kx的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O′,A′,若线段O′A′与反比例函数y=kx的图象有公共点,直接写出a的取值范围.16.已知AM是△ABC的中线,点D在线段AM上[点D不与点A重合),过点D作DF∥AB交AC边于点F,过点C作CE∥AM交DF的延长线于点E,连接AE.(1)如图1,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与点M重合时,过点M作MG∥DE交EC于点G,连接BD、AG在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形.17.如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)18.已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.19.如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM = AN;(2)若⊙O的半径R = 3,PA = 9,求OM的长.20.在△ABN中,∠B=90°,点M是AB上的动点(不与A,B两点重合),点C 是BN延长线上的动点(不与点N重合),且AM=BC,CN=BM,连接CM与AN交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M,N运动的过程中,始终有∠APM小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:。
2024年中考第一次模拟考试(山东济南卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .【答案】A【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【详解】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210 B .99.7210 C .109.7210 D .119.7210 【答案】C【分析】本题考查了科学记数法:把一个绝对值大于等于10的数表示成10n a 的形式(a 大于或等于1且小于10,n 是正整数);n 的值为小数点向左移动的位数.根据科学记数法的定义,即可求解.【详解】解:972亿10972000000009.7210 ,故选:C .3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ,交直线m 于点C .若150 ,则2 的度数为().B.C..【答案】B【分析】本题考查了轴对称图形和中心对称图形的识别.根据轴对称图形和中心对称图形的定义判断即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、是轴对称图形,不是中心对称图形,本选项不符合题意;、是轴对称图形,也是中心对称图形,本选项符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;.三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张上部图片放入一个布袋,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸取一张,则这两张小A .(13)(23)10B .(31)(32)1C .(13)(23)36D .(13)(23)10④BH 的最小值为5.A .1B 【答案】C 【分析】根据勾股定理求出90ACB ∵,AC BC ,ACB 是等腰直角三角形,2AB AC ,90,CBN ACDN BCN,90∵垂直AD,CE,90BCN HDC抛物线 23y ax b a x b 与x 轴的另一个交点为 1,0,关于x 的方程2ax bx ax b 有两个根14x ,21x ,故③正确;④当0a ,当41x 时,12y y ,故④错误;故选:B .【点睛】本题考查了二次函数的基本性质,二次函数与一次函数交点,二次函数与不等式等,理解性质,掌握解法是解题的关键.第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)【答案】53 82【分析】连接OF,由勾股定理可计算得正方形角形COD的面积为12,扇形【详解】解:连接OF,则OF【点睛】本题考查扇形面积的计算,勾股定理,正方形的性质;构造直角三角形运用勾股定理是解题的关键.15.如图,在菱形ABCD中,边长为若将EBF△沿着EF折叠,使得点【答案】2或3/3或2【分析】过点M作MF 直线l 在坐标轴上的对称点,过点M平行可得45OPA,即可证明中点坐标公式可求出MF和ME,与直线 平行,∵直线l与直线y x设直线l解析式为y x b,轴于点D,则过点M作MD x,∵直线l的解析式为y x b,OPD45,45OFE OEF均为等腰直角三角形,MDE与OEF,12bb ,解得:3点P坐标为(0,3),t .3点M关于l的对称点,当2t 时,落在y轴上,当3t 时,落在x轴上.故答案为:2或3.【点睛】本题考查了一次函数的图象与几何变换.注意在x轴、y轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),(1)求证:AE DF ;(2)若120A ,83BF 【答案】(1)见详解.由(1)知AB AF ,且BAF ∴60BAH ,12BH BF∵30ABH ,(1)如图2,求遮阳棚前端B 到墙面AD 的距离;(2)如图3,某一时刻,太阳光线与地面夹角60CFG ,求遮阳棚在地面上的遮挡宽度确到1cm ).(参考数据:sin 720.951,cos 720.309,tan 72 3.078,3 1.732 【答案】(1)遮阳棚前端B 到墙面AD 的距离约为190.2cm(2)遮阳棚在地面上的遮挡宽度DF 的长约为69cm∴四边形BEHC ,四边形由(1)得190.2cm BE ∴190.2cm DK HC BE 在Rt ABE △中,cos ∴cos72200AE【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,作出合适的辅助线,构造出直角三角形,“滴滴”网约车司机收入频数分布表:月收入4千元5千元9千元人数(个)342根据以上信息,分析数据如表:平均月收入/千元中位数(1)求证:BF 是O 的切线;(2)若6EF ,cos ABC ①求BF 的长;②求O 的半径.)利用圆周角定理,等腰三角形的性质和圆的切线的判定定理解答即可;交于点思考问题:(1)设1,P a a ,1,R b b,求直线OM 的函数解析式(用含a ,b 的代数式表示),并说明Q 点在直线(2)证明:13MOB AOB .(3)如图2,若直线y x 与反比例函数 40y x x 交于点C ,D 为反比例函数 40y x x 第一象限上的一个动点,使得30COD .求用材料中的方法求出满足条件D 点坐标.由题意得四边形PQRM 是矩形,∴PR QM ,12SP PR,∴SP SM ,∴12 ,【点睛】此题在考查三等分角的作法时,综合考查了待定系数法求函数解析式的方法、矩形的性质以及三角形外角的性质等,综合性较强.y x25.如图1,在平面直角坐标系xOy中,二次函数2顶点为M.矩形ABCD的顶点D与原点O重合,顶点A,当点G 在点Q 的下方时, 22224QG t t t t 52(在03t 的范围内).或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.(1)如图1,调整菱形ABCD ,使90A ,当点M 在菱形ABCD 外时,在射线在Rt CEM △中,CME 12CE CM ,设MD x ,MF CD ∵,45CDM ,DFM 为等腰直角三角形,22DF MF x ,∵四边形ABCD 是菱形,, ,120BCD设MD y ,同①可得:DF 26626DF CF y y ,9236y ,9236MD ,综上所述,MD 的长度为9【点睛】本题主要考查了三角形全等的判定与性质、等腰直角三角形的判定与性质、菱形的性质、正方形。
中考模拟测试卷一(120分钟,150分)一、选择题(本大题共12小题,满分48分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.计算|√2-1|+(√2)0的结果是()A.1B.√2C.2-√2D.2√2-12.下列运算正确的是()A.a3+a3=2a6B.a6÷a-3=a3C.a3·a2=a6D.(-2a2)3=-8a63.一周有604800秒,604800用科学记数法表示为()A.6048×102B.6.048×105C.6.048×106D.0.6048×1064.下列倡导节约的图案中,是轴对称图形的是()A B C D5.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为()A.40°B.90°C.50°D.100°6.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄 12 13 14 15 16 人数12231则这些学生年龄的众数和中位数分别是( ) A.15,14 B.15,13 C.14,14 D.13,147.在一个不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A.13B.14C.15D.168.若关于x 的不等式组{x -a ≤0,5-2x <1的整数解只有1个,则a 的取值范围是( )A.2<a<3B.3≤a<4C.2<a ≤3D.3<a ≤49.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD 前进,到达坡顶D 点处,DC=BC.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角∠AEF 为27°(点A,B,C,D,E 在同一平面内).斜坡CD 的坡度(或坡比)i=1∶2.4,那么建筑物AB 的高度约为( )(参考数据sin 27°≈0.45,cos 27°≈0.89,tan 27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米10.二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+c 和反比例函数y=bx 在同一平面直角坐标系中的图象大致是( )A B C D11.如图,正方形ABCD 内接于☉O,AB=2√2,则AB ⏜的长是( ) A.π B.32π C.2π D.π2第11题图第12题图12.将直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB=3,则光盘表示的圆的直径是( ) A.3 B . 3√3 C.6 D.6√3二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.已知一元二次方程3x 2+4x-k=0有两个不相等的实数根,则k 的取值范围是 .14.下面3个天平左盘中的“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.15.如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,⏜上.若OD=8,OE=6,则阴影以OD,OE为邻边的▱ODCE的顶点C在AB部分图形的面积是(结果保留π).第15题图第16题图16.如图,在直角坐标系中放入一个矩形纸片ABCO,OC=9.将纸片翻折.则点B'后,点B恰好落在x轴上,记为B',折痕为CE,已知tan∠OB'C=34的坐标为.17.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a的值为.18.如图,在△ABC 和△ACD 中,∠B=∠D,tanB=12,BC=5,CD=3,∠BCA=90°-12∠BCD,则AD= .三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤) 19.(8分)先化简,再求值:(a -1+2a+1)÷(a 2+1),其中a=√20.(8分)为响应市政府关于“垃圾不落地·市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有1 000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有 名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(11分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元;(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?22.(12分)如图,在△ABC和△DCB中,AB=DC,AC=DB,AC,DB交于点M.(1)求证:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.23.(12分)如图,已知A(3,m),B(-2,-3)是直线AB和某反比例函数图象的两个交点.(1)求直线AB和反比例函数的表达式;(2)观察图象,直接写出当x在什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB 的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.24.(13分)如图1,在平面直角坐标系xOy中,直线l:y=3x+m与x轴、y4x2+bx+c经过点B,且与直线l 轴分别交于点A和点B(0,-1),抛物线y=12的另一个交点为C(4,n).(1)求n的值和抛物线的表达式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M逆时针方向旋转90°后,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.25.(14分)如图1,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图2,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图2的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图3写出证明过程;若变化,请说明理由.图1图2图3中考模拟测试卷一一、选择题1.B2.D3.B4.C5.B6.A7.A8.B9.B 10.D 11.A 12.D 二、填空题 13.答案 k>-4314.答案 10解析 设“△”的质量为x,“□”的质量为y,由题意得{x +y =6,x +2y =8,解得{x =4,y =2.∴第三个天平右盘中砝码的质量为2x+y=2×4+2=10.15.答案 25π-48解析 连接OC,∵∠AOB=90°,四边形ODCE 是平行四边形,∴▱ODCE 是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90°·π×102360°-8×6=25π-48.16.答案 (12,0)解析 在Rt △OB'C 中,tan ∠OB'C=34,则OC OB'=34,即9OB'=34,解得OB'=12,则点B'的坐标为(12,0). 17.答案 75解析 观察每个图形最上边正方形中数字的规律为1,3,5,7,9,11.左下角数字变化规律为2,22,23,24,25,26,所以b=26.观察数字关系可以发现,右下角数字等于同图形中最上边数字与左下角数字之和,所以a=26+11=75.18.答案 2√5解析 如图,延长DC 至点Q,使CQ=BC=5,连接AQ,过点A 作AH ⊥DQ 于点H,则DQ=DC+CQ=CD+BC=3+5=8,∵∠BCA+∠ACQ+∠BCD=180°,∠BCA=90°-12∠BCD,设∠BCD=x°,则∠BCA=90°-12x°,∴∠ACQ=180°-x°-(90°-12x °)=90°-12x°=∠BCA,又∵AC=AC,∴△BCA ≌△QCA(SAS),∴∠B=∠Q=∠D,∴AD=AQ, ∵AH ⊥DQ,∴DH=QH=12DQ=4,tan ∠B=tan ∠Q=AH QH=AH 4=12,∴AH=2,∴AQ=AD=2√5. 三、解答题 19.解析 原式=(a+1)(a -1)+2a+1·1a 2+1=a 2+1a+1·1a 2+1=1a+1,当a=√2-1时,原式=√22.20.解析 (1)由题意得,被调查的学生人数为4÷8%=50,则C 选项的人数为50×30%=15,D 选项的人数为50-(4+21+15)=10,则B 选项所占百分比为2150×100%=42%,D 选项所占百分比为1050×100%=20%.补全统计图如下:(2)500.(3)画树状图如下:共有12种等可能的结果,其中满足条件的结果有6种,∴P(抽到一男一女)=12.21.解析 (1)设该商店3月份这种商品的售价为x 元.根据题意,得2 400x=2 400+8400.9x-30,解得x=40.经检验,x=40是所列方程的解,且符合题意.答:该商店3月份这种商品的售价为40元. (2)设该商品的进价为a 元.根据题意,得(40-a)×2 40040=900,解得a=25.4月份的售价为40×0.9=36(元),4月份的销售数量为2 400+84036=90(件).4月份的利润为(36-25)×90=990(元).答:该商店4月份销售这种商品的利润是990元. 22.解析 (1)证明:在△ABC 和△DCB 中,∵{AB =DC,AC =DB,BC =CB,∴△ABC ≌△DCB(SSS).(2)四边形BNCM 是菱形.证明如下:∵BN ∥AC,CN ∥BD,∴四边形BNCM 为平行四边形,∵△ABC ≌△DCB,∴∠DBC=∠ACB, ∴MB=MC,∴平行四边形BNCM 为菱形.23.解析 (1)设反比例函数表达式为y=kx (k ≠0),把B(-2,-3)代入,可得k=-2×(-3)=6,∴反比例函数表达式为y=6x.把A(3,m)代入y=6x,可得m=2,∴A(3,2),设直线AB 的表达式为y=ax+b(a ≠0),把A(3,2),B(-2,-3)代入,可得{2=3a +b,-3=-2a +b,解得{a =1,b =-1,∴直线AB 的表达式为y=x-1.(2)当x<-2或0<x<3时,直线AB 在双曲线的下方.(3)存在点C,使得△OBC 的面积等于△OAB 的面积.①延长AO 交双曲线于点C 1,∵点A 与点C 1关于原点对称,∴AO=C 1O,∴△OBC 1的面积等于△OAB 的面积,此时,点C 1的坐标为(-3,-2);②过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积,由B(-2,-3)可得OB 的表达式为y=32x,可设直线C 1C 2的表达式为y=32x+b',把C 1(-3,-2)代入,可得-2=32×(-3)+b',解得b'=52,∴直线C 1C 2的表达式为y=32x+52,解方程组{y =6x,y =32x +52,可得C 2(43,92);③过点A 作OB 的平行线,交反比例函数图象于点C 3,则△OBC 3的面积等于△OAB 的面积,设直线AC 3的表达式为y=32x+b″,把A(3,2)代入,可得2=32×3+b″,解得b″=-52,∴直线AC 3的表达式为y=32x-52,解方程组{y =6x,y =32x -52,可得C 3(-43,-92),综上所述,点C 的坐标为(-3,-2)或(43,92)或(-43,-92) . 24.解析 (1)∵直线l:y=34x+m 经过点B(0,-1),∴m=-1,∴直线l 的表达式为y=34x-1.∵直线l:y=34x-1经过点C(4,n),∴n=34×4-1=2,∵抛物线y=12x 2+bx+c 经过点C(4,2)和点B(0,-1),∴{12×42+4b +c =2,c =-1,解得{b =-54,c =-1,∴抛物线的表达式为y=12x 2-54x-1.(2)令y=0,则34x-1=0,解得x=43,∴点A 的坐标为(43,0),∴OA=43.在Rt △OAB中,OB=1,OA=43,∴AB=√OA 2+OB 2=√(43)+12=53,∵DE ∥y 轴,∴∠ABO=∠DEF,在矩形DFEG 中, EF=DE ·cos ∠DEF=DE ·OB AB =35DE,DF=DE ·sin∠DEF=DE ·OA AB =45DE,∴p=2(DF+EF)=2×(45+35)DE=145DE,∵点D 的横坐标为t(0<t<4), ∴D (t,12t 2-54t -1),E (t,34t -1),∴DE=(34t -1)-(12t 2-54t -1)=-12t 2+2t,∴p=145×(-12t 2+2t)=-75t 2+285t,∵p=-75(t-2)2+285,且-75<0,∴当t=2时,p 有最大值285.(3)点A 1的横坐标为34或-712.∵△AOB 绕点M 沿逆时针方向旋转90°,∴A 1O 1∥y 轴时,B 1O 1∥x 轴,设点A 1的横坐标为x,①如图1,点O 1,B 1在抛物线上时,点O 1的横坐标为x,点B 1的横坐标为x+1,∴12x 2-54x-1=12(x+1)2-54(x+1)-1,解得x=34;②如图2,点A 1,B 1在抛物线上时,点B 1的横坐标为x+1,点A 1的纵坐标比点B 1的纵坐标大43,∴12x 2-54x-1=12(x+1)2-54(x+1)-1+43,解得x=-712,综上所述,点A 1的横坐标为34或-712.图1 图225.解析 (1)AF=√2AE.理由:∵四边形ABFD 是平行四边形, ∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AF=√2AE.故答案为AF=√2AE.(2)结论:AF=√2AE.理由:如图2中,连接EF,DF 交BC 于点K.∵四边形ABFD 是平行四边形,∴AB ∥DF,∴∠DKE=∠ABC=45°, ∴∠EKF=180°-∠DKE=135°,EK=ED, ∵∠ADE=180°-∠EDC=180°-45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF 和△EDA 中,{EK =ED,∠EKF =∠ADE,KF =AD,∴△EKF ≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°, ∴△AEF 是等腰直角三角形,∴AF=√2AE.图2图3(3)结论不变,AF=√2AE.理由:如图3中,连接EF,延长FD 交AC 于点K.∵四边形ABFD 是平行四边形,∴AB ∥DF,∴∠CKF=∠CAB=90°.∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,∠ACE=(90°-∠KDC)+∠D CE=135°-∠KDC,∴∠EDF=∠ECA,∵DF=AB,AB=AC,∴DF=AC.在△EDF 和△ECA 中,{DF =AC,∠EDF =∠ECA,DE =CE,∴△EDF ≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF 是等腰直角三角形,∴AF=√2AE.。
2020届**市初三中考一诊联考试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.计算sin45︒的结果等于( )A .12B .2CD .12.下列运算正确的是( )A .a 12÷a 6=a 6B .(a ﹣2b )2=a ﹣4bC .a 3•a 3=2a 6D .(a 2)3=a 53.若不等式组2120x x x m ->-⎧⎨+≤⎩有解,则m 的取值范围是( ) A .1m >- B .1m ≥- C .1m ≤- D .1m <-4.我们在探究二次函数的图象与性质时,首先从y=ax 2(a ≠0)的形式开始研究,最后到y=a(x-h)2+k(a ≠0)的形式,这种探究问题的思路体现的数学思想是( )A .转化B .由特殊到一般C .分类讨论D .数形结合5.如图,菱形OABC ,A 点的坐标为(5,0),对角线OB 、AC 相交于D 点,双曲线y =k x(x >0)经过D 点,交BC 的延长线于E 点,交AB 于F 点,连接OF 交AC 于M ,且OB •AC =40.有下列四个结论:①k =8;②CE =1;③AC +OB=S △AFM :S △AOM =1:3.其中正确的结论是( )A .①②B .①③C .①②③D .①②③④6.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5.7.方程21321x x =-+的解为( )A .x =3B .x =2C .x =﹣53D .x =﹣128.下列运算正确的是( )A 4=±B .(﹣3ab 3)2=6a 2b 5C .2a -2=214a D .5325533ab ab b ÷= 9.在抛物线y =x 2﹣4x+m 的图象上有三个点(﹣3,y 1),(1,y 2),(4,y 3),则y 1,y 2,y 3的大小关系为( )A .y 2<y 3<y 1B .y 1<y 2=y 3C .y 1<y 2<y 3D .y 3<y 2<y 110.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( )A .60°B .50°C .40°D .30°二、填空题(共4题,每题4分,共16分)11.如图,菱形ABCD 中,sin ∠BAD =45,对角线AC ,BD 相交于点O ,以O 为圆心,OB 为半径作⊙O 交AD 于点E ,已知DE =1cm ;菱形ABCD 的周长为_____12.如图,在平行四边形ABCD 中,AB <AD ,∠C =150°,CD =8,以AB 为直径的⊙O交BC于点E,则阴影部分的面积为_____.13.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:当y<﹣3时,x的取值范围是_____.14.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,已知△ABC中,CA=CB,∠ACB=120°,P为△ABC 的布罗卡尔点,若,则PB+PC=_____.三、解答题(共6题,总分54分)15.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD 、CD 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.16.计算:(π﹣3)0﹣(13)﹣117.如图,10×10的网格中,A ,B ,C 均在格点上,诮用无刻度的直尺作直线MN ,使得直线MN 平分△ABC 的周长(留作图痕迹,不写作法)(1)请在图1中作出符合要求的一条直线MN ;(2)如图2,点M 为BC 上一点,BM =5.请在AB 上作出点N 的位置.18.如图1,2分别是某款篮球架的实物图与示意图,AB ⊥BC 于点B ,底座BC =1.3米,底座BC 与支架AC 所成的角∠ACB =60°,点H 在支架AF 上,篮板底部支架EH ∥BC .EF ⊥EH 于点E ,已知AH =2米,HF 米,HE =1米. (1)求篮板底部支架HE 与支架AF 所成的∠FHE 的度数.(2)求篮板底部点E 到地面的距离,(精确到0.01米)(参考数据:≈1.41)19.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A 、B 两点,其中A点坐标为()1,0-,点()0,5C 、()1,8D 在抛物线上,M 为抛物线的顶点.(1)求抛物线的解析式;(2)求MCB ∆的面积.20.已知函数y =1a x -+b (a 、b 为常数且a ≠0)中,当x =2时,y =4;当x =﹣1时,y =1.请对该函数及其图象进行如下探究:(1)求该函数的解析式,并直接写出该函数自变量x 的取值范围; (2)请在下列直角坐标系中画出该函数的图象;(3)请你在上方直角坐标系中画出函数y =2x 的图象,结合上述函数的图象,写出不等式1a x -+b ≤2x 的解集.。
2020年山东省济南市历下区中考数学一模试卷一、选择题(本大题共12个小题,每小题4题,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)2020的相反数是()A.2020B.﹣2020C.12020D.-120202.(4分)下列立体图形中,俯视图与主视图不同的是()A.B.C.D.3.(4分)2020年2月20日下午,山东省第十二批援助湖北医疗队从济南遥墙机场集结,乘坐包机启程出征.千余勇士赴荆楚,万难不辞战疫,山东已累计派出十二批医疗队1797人援助湖北,数字1797用科学记数法表示为()A.1.797×103B.0.1797×104C.1.797×104D.17.97×102 4.(4分)如图,已知AB∥DC,∠BED=60°,BC平分∠ABE,则∠C的度数是()A.75°B.60°C.45°D.30°5.(4分)有理数a,b在数轴上表示如图所示,则下列各式中正确的是()A.ab>0B.a+b<0C.b<a D.|b|>|a|6.(4分)下面在线学习平台的图标中,是轴对称图形的是()A.B.C.D.7.(4分)下列运算正确的是()A.x2+x=x3B.(﹣2x2)3=8x6C.(x﹣y)(x+y)=x2﹣y2D.(x+1)(x﹣2)=x2﹣2x﹣28.(4分)以下是某校九年级10名同学参加学校演讲比赛的统计表.则这组数据的众数和中位数分别为()成绩/分80859095人数/人1342 A.85,87.5B.85,85C.85,90D.90,909.(4分)已知反比例函数y=kx图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1>y2 10.(4分)图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.10)cm+B.10)cm c C.64cm D.54cm11.(4分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A .175πcm 2B .350πcm 2C .8003πcm 2D .150πcm 212.(4分)如图,在二次函数y =ax 2+bx +c (a ≠0)的图象中,小明同学观察得出了下面几条信息:①b 2﹣4ac >0;②abc <0;③2a b ca b++-<0;④b 2=4a (c ﹣1);⑤关于x 的一元二次方程ax 2+bx +c =3无实数根,共中信息错误的个数为()A .4B .3C .2D .1二、填空题(本大题共6个小题,每小题4分,共24分.)13.(4分)分解因式:m 2﹣8m +16=.14.(4分)转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数为3的倍数的概率是.15.(4分)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.16.(4分)若代数式121a a +-的值是2,则a =.17.(4分)A ,B 两地相距100千米,甲、乙两人骑车同时分别从A ,B 两地相向而行.假设他们都保持匀速行驶,则他们各自到A 地的距离S (千米)都是骑车时间t (时)的一次函数.如图,直线l 1、l 2分别表示甲、乙骑车S 与t 之间关系的图象.结合图象提供的信息,经过小时两人相遇.18.(4分)如图ABCD是一个矩形桌子,一小球从P撞击到Q,反射到R,又从R反射到S,从S反射回原处P,入射角与反射角相等(例如∠PQA=∠RQB等),已知AB=9,BC=12,BR=4.则小球所走的路径的长为.三、解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)19.(6分)计算:|﹣3|+(π﹣2020)0﹣2sin30°+(1 3)﹣120.(6分)解不等式组:322112x xx-<+⎧⎪⎨-≥-⎪⎩,并写出它的所有整数解.21.(6分)如图,在平行四边形ABCD中,E,F分别是对角线BD上的两点,且BE=DF.求证:AE=CF.22.(8分)为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg,甲型机器人分类800kg垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等.(1)两种机器人每小时分别分类多少垃圾?(2)现在两种机器人共同分类700kg垃圾,工作2小时后甲型机器人因机器维修退出,求甲型机器人退出后乙型机器人还需工作多长时间才能完成?23.(8分)如图,已知AB是⊙O的直径,DC与⊙O相切于点C,交AB的延长线于点D.(1)求证:∠BAC=∠BCD;的半径.(2)若BD=4,DC=6,求⊙O24.(10分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,并对他们的成绩(单位:分)统计如下:858095100909585657585909070901008080909575806580958510090858580957580907080957510090根据数据绘制了如下的表格和统计图:等级成绩(x)频数频率A90<x≤100.25100aB80<x≤90C70<x≤120.380D60≤x≤b70合计401根据上面提供的信息,回答下列问题:(1)统计表中的a=,b=;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该小区答题成绩为“C级”的有多少人?(4)该社区有2名男管理员和2名女管理员,现从中随机挑选2名管理员参加“社区防控”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.25.(10分)如图,已知反比例函数y=mx(x>0)的图象经过点A(4,2),过A作AC⊥y轴于点C.点B为反比例函数图象上的一动点,过点B作BD⊥x轴于点D,连接AD.直线BC与x轴的负半轴交于点E.(1)求反比例函数的表达式;(2)若BD=3OC,求△BDE的面积;(3)是否存在点B,使得四边形ACED为平行四边形?若存在,请求出点B的坐标;若不存在,请说明理由.26.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.27.(12分)图①,抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)如图2,将抛物线在BC上方的图象沿BC折叠后与y轴交与点E,求点E的坐标.2020年山东省济南市历下区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4题,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)2020的相反数是()A.2020B.﹣2020C.12020D.-12020【解答】解:2020的相反数是:﹣2020.故选:B.2.(4分)下列立体图形中,俯视图与主视图不同的是()A.B.C.D.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图是圆,主视图是长方形,故选项B合题意;C.俯视图与主视图都是圆,故选项C不合题意;D.俯视图和主视图是长方形;故选项D不符合题意;故选:B.3.(4分)2020年2月20日下午,山东省第十二批援助湖北医疗队从济南遥墙机场集结,乘坐包机启程出征.千余勇士赴荆楚,万难不辞战疫,山东已累计派出十二批医疗队1797人援助湖北,数字1797用科学记数法表示为()A.1.797×103B.0.1797×104C.1.797×104D.17.97×102【解答】解:1797=1.797×103.故选:A.4.(4分)如图,已知AB∥DC,∠BED=60°,BC平分∠ABE,则∠C的度数是()A.75°B.60°C.45°D.30°【解答】解:∵AB∥DC,∠BED=60°,∴∠ABE=60°,∵BC平分∠ABE,∴∠ABC=∠ABE=30°,∵AB∥CD,∴∠C=∠ABC=30°,故选:D.5.(4分)有理数a,b在数轴上表示如图所示,则下列各式中正确的是()A.ab>0B.a+b<0C.b<a D.|b|>|a|【解答】解:由数轴上的位置得:a<0<b,且|a|>|b|,∴ab<0,a+b<0,故选:B.6.(4分)下面在线学习平台的图标中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.7.(4分)下列运算正确的是()A.x2+x=x3B.(﹣2x2)3=8x6C.(x﹣y)(x+y)=x2﹣y2D.(x+1)(x﹣2)=x2﹣2x﹣2【解答】解:A、x2与x不是同类项,不能合并,故此选项不符合题意;B、(﹣2x2)3=﹣8x6,故此选项不符合题意;C、(x﹣y)(x+y)=x2﹣y2,故此选项符合题意;D、原式=x2﹣x﹣2,故此选项不符合题意,故选:C.8.(4分)以下是某校九年级10名同学参加学校演讲比赛的统计表.则这组数据的众数和中位数分别为()成绩/分80859095人数/人1342 A.85,87.5B.85,85C.85,90D.90,90【解答】解:在这一组数据中90是出现次数最多的,故众数是90.而将这组数据从小到大的顺序排列后,处于中间位置的那个数是90、90,那么由中位数的定义可知,这组数据的中位数是90.故选:D.9.(4分)已知反比例函数y=kx图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1>y2【解答】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1<y2,所以D选项错误.故选:C.10.(4分)图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A .10)cm +B .10)cm +C .64cmD .54cm【解答】解:如图所示,过A 作AE ⊥CP 于E ,过B 作BF ⊥DQ 于F ,则Rt △ACE 中,AE =12AC =12×54=27(cm ),同理可得,BF =27cm ,又∵点A 与B 之间的距离为10cm ,∴通过闸机的物体的最大宽度为27+10+27=64(cm ),故选:C .11.(4分)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为()A .175πcm 2B .350πcm 2C .8003πcm 2D .150πcm 2【解答】解:∵AB =25,BD =15,∴AD =10,∴S 贴纸=2×221202512010()360360ππ∙⨯∙⨯-=2×175π=350πcm 2,故选:B .12.(4分)如图,在二次函数y =ax 2+bx +c (a ≠0)的图象中,小明同学观察得出了下面几条信息:①b 2﹣4ac >0;②abc <0;③2a b c a b ++-<0④b 2=4a (c ﹣1);⑤关于x 的一元二次方程ax 2+bx +c =3无实数根,共中信息错误的个数为()A .4B .3C .2D .1【解答】解:①根据图象可知:△>0,∴b 2﹣4ac >0,故①正确;②由图象可知:a <0,c >0,由对称轴可知:2b a -<0,∴b <0,∴abc >0,故②错误;③由图象可知:﹣1<2b a -<0,∴2a ﹣b <0,当x =1时,y <0,∴a +b +c <0,∴2a b c a b++->0,故③错误;④由图象可知:当x =2b a-时,y =1,∴244ac b a-=1,∴4ac ﹣b 2=4a ,∴b 2=4a (c ﹣1),故④正确;⑤由于二次函数y =ax 2+bx +c (a ≠0)的最大值为1,∴关于x 的一元二次方程ax 2+bx +c =3无实数根,故⑤正确;故选:C .二、填空题(本大题共6个小题,每小题4分,共24分.)13.(4分)分解因式:m 2﹣8m +16=(m ﹣4)2.【解答】解:m 2﹣8m +16=(m ﹣4)2.故答案为:(m ﹣4)2.14.(4分)转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数为3的倍数的概率是13.【解答】解:在这6个数字中,为3的倍数的有3和6,共2个,∴任意转动转盘一次,当转盘停止转动,指针落在扇形中的数为3的倍数的概率是26=13,故答案为:13.15.(4分)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.16.(4分)若代数式121a a +-的值是2,则a =1.【解答】解:根据题意得:121a a +-=2,去分母得:a+1=4a﹣2,移项合并得:3a=3,解得:a=1,经检验a=1是分式方程的解,故答案为:117.(4分)A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数.如图,直线l1、l2分别表示甲、乙骑车S与t之间关系的图象.结合图象提供的信息,经过207小时两人相遇.【解答】解:设l1的关系式为:s1=kt,则30=k×2,解得:k=15,故s1=15t;设s2=at+b,将(0,100),(2,60),则100260 ba b=⎧⎨+=⎩,解得:20100 ab=-⎧⎨=⎩,故l2的关系式为s2=﹣20t+100;15t=﹣20t+100,t=20 7.即他们经过207小时两人相遇.18.(4分)如图ABCD是一个矩形桌子,一小球从P撞击到Q,反射到R,又从R反射到S,从S反射回原处P,入射角与反射角相等(例如∠PQA=∠RQB等),已知AB=9,BC=12,BR=4.则小球所走的路径的长为30.【解答】解:∵入射角与反射角相等,∴∠BQR =∠AQP ,∠APQ =∠SPD ,∠CSR =∠DSP ,∠CRS =∠BRQ ,∵四边形ABCD 是矩形,∴∠A =∠B =∠C =∠D =90°,∴∠DPS +∠DSP =90°,∠AQP +∠APQ =90°,∴∠DSP =∠AQP =∠CSR =∠BQR ,∴∠RSP =∠RQP ,同理∠SRQ =∠SPQ ,∴四边形SPQR 是平行四边形,∴SR =PQ ,PS =QR ,在△DSP 和△BQR 中BQR=DSP D=B PS RQ ⎧⎪⎨⎪=⎩∠∠∠∠,∴△DSP ≌△BQR (AAS ),∴BR =DP =4,BQ =DS ,∵四边形ABCD 是矩形,∴AB =CD =9,BC =AD =112,∴AQ =9﹣DS ,AP =12﹣4=8,∵∠SPD =∠APQ ,∴△SDP ∽△QAP ,∴DP AP DS AQ=,∴489DS DS=-,DS =3,在Rt△DSP中,由勾股定理得:PS=QR5=同理PQ=RS=10,∴QP+PS+SR+QR=2×5+2×10=30,故答案为:30.三、解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)19.(6分)计算:|﹣3|+(π﹣2020)0﹣2sin30°+(1 3)﹣1【解答】解:|﹣3|+(π﹣2020)0﹣2sin30°+(1 3)﹣1=3+1﹣2×1 2 +3=620.(6分)解不等式组:322112x xx-<+⎧⎪⎨-≥-⎪⎩,并写出它的所有整数解.【解答】解:322112x xx-<+⎧⎪⎨-≥-⎪⎩①②,解①得x<2,解②得x≥﹣1.不等式组的解集是﹣1≤x<2.则整数解是﹣1,0,1.21.(6分)如图,在平行四边形ABCD中,E,F分别是对角线BD上的两点,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠ABE =∠CDF .在△ABE 和△DCF 中,ABE=CDF AB CD BE DF =⎧⎪⎨⎪=⎩∠∠,∴△ABE ≌△DCF (SAS ).∴AE =CF .22.(8分)为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg ,甲型机器人分类800kg 垃圾所用的时间与乙型机器人分类600kg 垃圾所用的时间相等.(1)两种机器人每小时分别分类多少垃圾?(2)现在两种机器人共同分类700kg 垃圾,工作2小时后甲型机器人因机器维修退出,求甲型机器人退出后乙型机器人还需工作多长时间才能完成?【解答】解:(1)设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x ﹣20)kg 垃圾,由题意得:80060020x x =-,解得:x =80,检验:当x =80时,x (x ﹣20)≠0,所以,原分式方程的解为x =80,x ﹣20=80﹣20﹣60,答:甲型机器人每小时分类80kg 垃圾.则乙型机器人每小时分类60kg 垃圾,(2)[700﹣(80+60)×2]÷60=7小时,答:甲型机器人退出后乙型机器人还需要工作7小时.23.(8分)如图,已知AB 是⊙O 的直径,DC 与⊙O 相切于点C ,交AB 的延长线于点D .(1)求证:∠BAC=∠BCD;(2)若BD=4,DC=6,求⊙O的半径.【解答】解:(1)如图,连接OC.证明:∵DC与⊙O相切,∠OCD=∠OCB+∠BCD=90°,∵AB是⊙O的直径,∴∠ACB=∠OCB+∠ACO=90°,∴∠ACO=∠BCD∵OA=OC,∴∠ACO=∠BAC,∴∠BAC=∠BCD;(2)由(1)可得,∠BAC=∠BCD;∵∠CDB=∠ADC,∴△CDB∽△ADC,∴BD DCDC AD=,即466AD=,∴DA=9∴AB=DA﹣BD=9﹣4=5,∴⊙O的半径为5 2.24.(10分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从有400人的某小区抽取40名人员的答卷成绩,并对他们的成绩(单位:分)统计如下:858095100909585657585909070901008080909575806580958510090858580957580907080957510090根据数据绘制了如下的表格和统计图:等级成绩(x)频数频率A90<x≤100.25100a0.35B80<x≤90C70<x≤120.380D60≤x≤4b70合计401根据上面提供的信息,回答下列问题:(1)统计表中的a=14,b=0.1;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该小区答题成绩为“C级”的有多少人?(4)该社区有2名男管理员和2名女管理员,现从中随机挑选2名管理员参加“社区防控”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.【解答】解:(1)由题意可知:B等级的频数a=14,∴B等级的频率为:14÷40=0.35,D等级的频数为4,b=1﹣0.25﹣0.35﹣0.3=0.1.故答案为:14、0.1、4、0.35;(2)如图即为补全的条形统计图;(3)0.3×400=120(名)答:估计该小区答题成绩为“C级”的有120人;(4)如图,根据树状图可知:所有可能的结果共有12种,恰好选中“1男1女”的有8种,∴恰好选中“1男1女”的概率为812=23.25.(10分)如图,已知反比例函数y=mx(x>0)的图象经过点A(4,2),过A作AC⊥y轴于点C.点B为反比例函数图象上的一动点,过点B作BD⊥x轴于点D,连接AD.直线BC与x轴的负半轴交于点E.(1)求反比例函数的表达式;(2)若BD=3OC,求△BDE的面积;(3)是否存在点B,使得四边形ACED为平行四边形?若存在,请求出点B的坐标;若不存在,请说明理由.【解答】解:(1)∵反比例函数y=mx(x>0)的图象经过点A(4,2),∴m=8,∴反比例函数y=8x(x>0).(2)∵AC⊥y轴,A(4,2),∴OC=2,∵BD=3OC,∴BD=6,∵BD⊥x轴,∴B(43,6),∵C(0,2),设直线BC 的解析式为y =kx +b ,则有2463b k b =⎧⎪⎨+=⎪⎩,解得32k b =⎧⎨=⎩,∴直线BC 的解析式为y =3x +2,∴E (﹣23,0),∴DE =23+43=2,∴S △BED =12×DE ×BD =6.(3)存在.如图,设BD 交AC 于F .设B (a ,8a),∵A (4,2)∴AC =4,∵四边形ACED 是平行四边形,∴DE =AC =4,且CF ∥DE ,∴△BCF ∽△BED ,∴CF BF DE DF =,即8284a a a-=,解得a =2,∴B (2,4).26.(12分)如图①,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到AE ,连接EC ,则:(1)①∠ACE 的度数是60°;②线段AC ,CD ,CE 之间的数量关系是AC =CD +CE .(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.【解答】解:(1)①∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由旋转知,AD=AE,∠DAE=60°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,故答案为60°;②由(1)知,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,∵△ABC是等边三角形,∴AC=BC,∴AC=CE+CD,故答案为AC=CE+CD;(2)在△ABC中,AB=AC,∠BAC=90°,∴BC AC,由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,AC=CE+CD;(3)由(2)知,△ABD≌△ACE,∴ACE=∠ABD,在△ABC中,AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∵∠DAE=90°,∴∠BCE+∠DAE=180°,∴点A,D,C,E在以DE为直径的圆上,∵AC与DE交于点F,∴AF是直径DE上的一点到点A的距离,即:当AF⊥DE时,AF最小,∴∠CFD=90°,∴∠CDF=90°﹣∠ACB=45°,∵∠ADE=45°,∴∠ADC=90°,∴四边形ADCE是矩形,∴AF最小=12AC=4.27.(12分)图①,抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)如图2,将抛物线在BC上方的图象沿BC折叠后与y轴交与点E,求点E的坐标.【解答】解:(1)∵抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,∴222(1)02330b cb c⎧-⨯--+=⎪⎨-⨯++=⎪⎩得46bc=⎧⎨=⎩∴y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴抛物线的对称轴是直线x=1,即该抛物线的解析式为y=﹣2x2+4x+6,对称轴是直线x=1;(2)分两种情况:设点D的坐标为(1,y)第一种情况是:∠BCD=90°时,则CD2+BC2=BD2,∵点B的坐标为(3,0),抛物线y=﹣2x2+4x+6交y轴于点C,∴点C的坐标为(0,6),∴[12+(y﹣6)2]+(32+62)=(3﹣1)2+y2,解得,y=6.5,∴点D的坐标为(1,6.5);第二种情况:当∠DBC=90°时,BD2+BC2=CD2,即[(3﹣1)2+y2]+(32+62)=12+(6﹣y)2,解得,y=﹣1,∴点D的坐标为(1,﹣1),综上所述,符合条件的点D的坐标为(1,6.5),(1,﹣1);(3)因为点C的坐标为(0,6),点B的坐标为(3,0),设直线BC 的解析式为y =kx +6,则3k +6=0,得k =﹣2,即直线BC 的解析式为y =﹣2x +6,如右图所示,作点E 关于直线BC 的对称点E ′交BC 于点F ,过点F 作FN ⊥y 轴于点N ,设E (0,m ),E ′(x ,y ),则EE ′⊥BC ,∴∠CFE =∠COB =90°,∴BC =∵∠ECF =∠BCO ,∴△ECF ∽△BCO ,∴CE CF CB CO=6CF =,解得,CF=)5m -又∵∠CNF =∠COB ,∠NCF =∠OCB ,∴△NCF ∽△OCB ,∴FN CF BO CB=即3FN =,解得,FN =2(6)5m -,∴点F 的横坐标为2(6)5m -,把x =2(6)5m -代入直线BC 的解析式,得y =465m +,∴点F 的坐标为(2(6)5m -,465m +),∵EE ′关于直线BC 对称,∴点F为EE′的中点,∴46252(6)25m y mx m++⎧=⎪⎪⎨-⎪=⎪⎩,解得4(6)51235mxmy-⎧=⎪⎪⎨+⎪=⎪⎩,∴E’(4(6)12355m m-+,)∵点E′在抛物线y=﹣2x2+4x+6上,∴1235m+=﹣2×[4(6)5m-]2+4×4(6)5m-+6,解得,m1=6,m2=97 32,∵点C(0,6),点E在点C下方,∴点E的坐标为(0,97 32).。
2020年山东省潍坊市中考数学一模试卷一、选择题1.下列运算一定正确的是()A.3a+3a=3a2B.a3•a4=a12C.(a3)2=a6D.(a+b)(b﹣a)=a2﹣b22.下列防疫的图标中是轴对称图形的是()A.B.C.D.3.据悉某企业3月份的口罩日产能已达到400万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为()A.1.24×107 只B.1.24×108 只C.0.124×109 只D.4×106 只4.小明用教材上的计算器输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为100,那么第2020步之后,显示的结果是()A.100B.0.0001C.0.01D.105.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简﹣|a+b|+的结果是()A.2a B.2b C.2a+2b D.06.如图,由8个大小相同的小正方体组成的几何体中,在标号的小正方体上方添加一个小正方体,使其左视图发生变化的有()A.②③④B.②③C.①②③D.①②④7.疫情无情人有情,爱心捐款传真情,疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:金额/元510 20 50100人数 6 17 14 8 5则他们捐款金额的平均数、中位数、众数分别是()A.27.6,10,20B.27.6,20,10C.37,10,10D.37,20,10 8.若整数a既使得关于x的分式方程﹣2=有非负数解,又使得关于x的方程x2﹣x+a+6=0无解,则符合条件的所有a的个数为()A.1B.2C.3D.49.如图,AB是半圆O的直径,C、D是上的两点,=,点E为上一点,且∠CED=2∠COD,则∠DOB=()A.86°B.85°C.81°D.80°10.如图,在△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A逆时针方向旋转得△AEF,其中,E,F是点B,C旋转后的对应点,BE,CF相交于点D.若四边形ABDF 为菱形,则∠CAE的大小是()A.90°B.75°C.60°D.45°11.如图,点A(a,1),B(b,4)都在双曲线y=﹣上,点P,Q分别是x轴,y轴上的动点,则四边形ABQP周长的最小值为()A.4B.6C.2+2D.812.如图,已知△ABC和△DEF均为等腰直角三角形,AB=2,DE=1,E、B、F、C在同一条直线上,开始时点B与点F重合,让△DEF沿直线BC向右移动,最后点C与点E重合,设两三角形重合面积为y,点F移动的距离为x,则y关于x的大致图象是()A.B.C.D.二、填空题(本题共6小题,每小题3分,满分18分)13.因式分解:a2﹣3ab﹣4b2=.14.已知m,n是方程x2﹣3x﹣2=0的两个实数根,则m+n+2mn=.15.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∠ABC和∠ACB的平分线相交于点D,过点D作DE∥AC交BC于点E,那么DE的长为.16.如图,正方形纸片ABCD的边长为4,E是边CD的中点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,则GE的长为.17.已知二次函数y=x2+2mx+3的图象交y轴于点B,交直线x=5于点C,设二次函数图象上的一点P(x,y)满足0≤x≤5时,y≤3,则m的取值范围为.18.如图,在平面直角坐标系中,点A1的坐标为(2,4),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x 于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2020的坐标为.三、解答题(本大题共7小题,8分+9分+8分+8分+11分+12分+12分,共66分,解答要写出文字说明证明过程或演算步骤)19.为做好延迟开学期间学生的在线学习服务工作,盐城市教育局推出“中小学延迟开学期间网络课堂”,为学生提供线上学习,据统计,第一批公益课受益学生20万人次,第三批公益课受益学生24.2万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?20.2020年国家教育部要求各地延期开学,并要求:利用网络平台,“停课不停学”.为响应号召,某校师生根据上级要求积极开展网络授课教学,八年级为了解学生网课发言情况,随机抽取该年级部分学生,对他们某天在网课上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:nA0≤n<2B2≤n<4C4≤n<6D6≤n<8E8≤n<10F10≤n<12(1)求出样本容量,并补全直方图,在扇形统计图中,“B”所对应的圆心角的度数是;(2)该年级共有学生500人,估计全年级在这天里发言次数不少于8的人数为;(3)该校八年级组织一次网络授课经验专项视频会议,从F组里挑两名同学发言,其中该组中有两名男生,利用“树状图”或列表法求出正好选中一男一女的概率.21.为了落实党的“精准扶贫”政策,A,B两城决定向C,D两乡运送肥料以支持农村生产.已知A,B两城共有肥料500吨,其中A城肥料比B城肥料少100吨,从A,B城往C,D两乡运肥料的平均费用如表:A城B城C乡20元/吨15元/吨D乡25元/吨30元/吨现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从B城运往D乡x吨肥料,总运费为y元,求y与x之间的函数关系,并说明如何安排运输才能使得总运费最小?22.数学活动课上,小明和小红要测量小河对岸大树BC的高度,小红在点A测得大树顶端B的仰角为45°,小明从A点出发沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)23.如图,已知AB为⊙O的直径,AC为⊙O的切线,连结CO,过B作BD∥OC交⊙O 于D,连结AD交OC于G,延长AB、CD交于点E.(1)求证:CD是⊙O的切线;(2)若BE=4,DE=8,求CD的长;(3)在(2)的条件下,连结BC交AD于F,求的值.24.已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE:AE:CE=1::2,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的边DF与边DM重合时(如图2),若OF=,求DN的长.25.如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A (0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.参考答案一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,满分36分.多选、不选、错选均记零分.)1.下列运算一定正确的是()A.3a+3a=3a2B.a3•a4=a12C.(a3)2=a6D.(a+b)(b﹣a)=a2﹣b2【分析】直接利用同底数幂的乘法运算法则以及平方差公式和合并同类项法则分别化简得出答案.解:A、3a+3a=6a,故此选项错误;B、a3•a4=a7,故此选项错误;C、(a3)2=a6,故此选项正确;D、(a+b)(b﹣a)=﹣a2+b2,故此选项错误.故选:C.2.下列防疫的图标中是轴对称图形的是()A.B.C.D.【分析】直接根据轴对称图形的概念分别解答得出答案.解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.3.据悉某企业3月份的口罩日产能已达到400万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为()A.1.24×107 只B.1.24×108 只C.0.124×109 只D.4×106 只【分析】求出3月份(按31天计算)该企业生产的口罩总数量,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.解:400万×31=4000000×31=124000000=1.24×108(只).故选:B.4.小明用教材上的计算器输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为100,那么第2020步之后,显示的结果是()A.100B.0.0001C.0.01D.10【分析】分别计算出第1至第8步的显示结果,据此可以得出显示结果每6步为周期循环,利用此循环规律求解可得.解:第1步显示结果为10000,第2步显示结果为,第3步显示结果为,第4步显示结果为,第5步显示结果为10000,第6步显示结果为100,第7步显示结果为10000,第8步显示结果为,……所以显示结果每6步为周期循环,∵2020÷6=336……4,∴第2020步后显示结果与第4步显示结果相同,为=0.0001,故选:B.5.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简﹣|a+b|+的结果是()A.2a B.2b C.2a+2b D.0【分析】直接利用数轴结合绝对值以及立方根的性质分别化简得出答案.解:由数轴可得:a<0,a+b<0,﹣b>0,故原式=﹣a+a+b﹣b=0.故选:D.6.如图,由8个大小相同的小正方体组成的几何体中,在标号的小正方体上方添加一个小正方体,使其左视图发生变化的有()A.②③④B.②③C.①②③D.①②④【分析】根据左视图的观察角度得出,左视图不变时小正方体的位置,从而得出答案.解:如图所示:在③号小正方体上方添加一个小正方体,其左视图可保持不变.在①②④的上方增加1个正方体其左视图均发生改变,故选:D.7.疫情无情人有情,爱心捐款传真情,疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:金额/元510 20 50100人数 6 17 14 8 5则他们捐款金额的平均数、中位数、众数分别是()A.27.6,10,20B.27.6,20,10C.37,10,10D.37,20,10【分析】根据平均数的计算公式求出这组数据的平均数,再根据中位数的定义直接求出这组数据的中位数即可.解:这组数的平均数是×(5×6+10×17+20×14+50×8+100×5)=27.6;把这些数从小到大排列,最中间两个数的平均数=20,这组数据中,10 出现次数17次,故众数为10.故选:B.8.若整数a既使得关于x的分式方程﹣2=有非负数解,又使得关于x的方程x2﹣x+a+6=0无解,则符合条件的所有a的个数为()A.1B.2C.3D.4【分析】解分式方程,由其解有非负数解,以及解不能为增根,列出a的不等式求得a 的取值范围;再根据使关于x的方程x2﹣x+a+6=0无解,得到△=b2﹣4ac≤0,由此列出a的不等式求得a的又一取值范围,综上a的取值范围,便可确定整数a的值,问题便可解决.解:解﹣2=得,x=﹣,∵分式方程﹣2=有非负数解,∴﹣≥0且x﹣1=﹣﹣1≠0∴a≤﹣1且a≠﹣4,∵关于x的方程x2﹣x+a+6=0无解,∴△=1﹣4(a+6)<0,解得,a>﹣5,综上,﹣5<x≤﹣1且a≠﹣4,∵a为整数,∴a=﹣5或﹣3或﹣2或﹣1,故选:D.9.如图,AB是半圆O的直径,C、D是上的两点,=,点E为上一点,且∠CED=2∠COD,则∠DOB=()A.86°B.85°C.81°D.80°【分析】连接BC、BD,如图,利用圆周角定理得到∠DBC=∠COD,则∠CED=4∠DBC,再根据圆内接四边形的性质得∠CED+∠DBC=180°,则可计算出∠DBC=36°,所以•∠DOC=72°,接着利用=得到∠AOC=∠BOD,然后利用平角定义可计算出∠BOD的度数.解:连接BC、BD,如图,∵∠DBC=∠COD,∵∠CED=2∠COD,∴∠CED=4∠DBC,∵∠CED+∠DBC=180°,∴4∠DBC+∠DBC=180°,解得∠DBC=36°,∴∠DOC=72°,∵=,∴∠AOC=∠BOD,∵∠AOC+∠DOC+∠BOD=180°,∴∠BOD+72°+∠BOD=180°,∴∠BOD=81°.故选:C.10.如图,在△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A逆时针方向旋转得△AEF,其中,E,F是点B,C旋转后的对应点,BE,CF相交于点D.若四边形ABDF为菱形,则∠CAE的大小是()A.90°B.75°C.60°D.45°【分析】由旋转的性质可得∠EAF=∠AEB=40°,AB=AE,由菱形的性质可求∠FAE =∠AEB=40°,由等腰三角形的性质和三角形内角和定理可求∠BAE的度数,即可求解.解:∵将△ABC绕点A逆时针方向旋转得△AEF,∴∠EAF=∠AEB=40°,AB=AE,∵四边形ABDF为菱形,∴AF∥BE,∴∠FAE=∠AEB=40°,∵AB=AE,∴∠ABE=∠AEB=40°,∴∠BAE=180°﹣40°﹣40°=100°,∴∠CAE=60°,故选:C.11.如图,点A(a,1),B(b,4)都在双曲线y=﹣上,点P,Q分别是x轴,y轴上的动点,则四边形ABQP周长的最小值为()A.4B.6C.2+2D.8【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于x轴的对称点D,B点关于y轴的对称点C,根据对称的性质得到C点坐标为(1,3),D点坐标为(﹣3,﹣1),CD分别交x轴、y轴于P点、Q 点,根据两点之间线段最短得此时四边形ABQP的周长最小,然后利用两点间的距离公式求解可得.解:∵点A(a,1),B(b,4)都在双曲线y=﹣上,∴a×1=4b=﹣4,∴a=﹣4,b=﹣1,∴A(﹣4,1),B(﹣1,4),作A点关于x轴的对称点D(﹣4,﹣1),B点关于y轴的对称点C(1,4),连接CD,分别交x轴、y轴于P点、Q点,此时四边形ABQP的周长最小,∵QB=QC,PA=PD,∴四边形ABQP周长=AB+BQ+PQ+PA=AB+CD,∴AB==3,CD==5,∴四边形ABQP周长最小值为3+5=8,故选:D.12.如图,已知△ABC和△DEF均为等腰直角三角形,AB=2,DE=1,E、B、F、C在同一条直线上,开始时点B与点F重合,让△DEF沿直线BC向右移动,最后点C与点E重合,设两三角形重合面积为y,点F移动的距离为x,则y关于x的大致图象是()A.B.C.D.【分析】要找出准确反映y与x之间对应关系的图象,需分析在不同阶段中y随x变化的情况,根据题意可得在△DEF移动的过程中,阴影部分总为等腰直角三角形,据此根据重合部分的面积的不同分情况讨论求解.解:根据题意,得△DEF移动的过程中,阴影部分总为等腰直角三角形,当0≤x≤1时,重合部分的直角边长为x,则y=•x•x=x2;当1<x<2时,重合部分的直角边长为1,则y==;当2≤x≤3时,重合部分的直角边长为1﹣(x﹣2)=3﹣x,则y=(3﹣x)2=x2﹣3x+4.5.由以上分析可知:这个分段函数的图象左边为开口向上的抛物线一部分,中间为直线的一部分,右边为开口向上的抛物线一部分.故选:A.二、填空题(本题共6小题,每小题3分,满分18分)13.因式分解:a2﹣3ab﹣4b2=(a﹣4b)(a+b).【分析】利用十字相乘法分解因式.解:原式=(a﹣4b)(a+b).故答案为(a﹣4b)(a+b).14.已知m,n是方程x2﹣3x﹣2=0的两个实数根,则m+n+2mn=﹣1.【分析】根据根与系数的关系得到m+n=3,mn=﹣2,然后利用整体代入的方法计算代数式的值.解:根据题意得m+n=3,mn=﹣2,所以m+n+2mn=3+2×(﹣2)=﹣1.故答案为﹣1.15.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∠ABC和∠ACB的平分线相交于点D,过点D作DE∥AC交BC于点E,那么DE的长为.【分析】设AF=x,CE=y,由平行线分线段成比例定理得:,即,证明△BEF∽△BCA,列比例式,可得方程组,解出即可.解:延长ED交AB于F,连接AD,∵∠ABC和∠ACB的平分线相交于点D,∴AD平分∠BAC,设AF=x,CE=y,∵CD平分∠ACB,∴∠ACD=∠ECD,∵ED∥AC,∴∠ACD=∠CDE,∴∠CDE=∠ECD,∴DE=CE=y,同理得:AF=FD=x,Rt△ABC中,由勾股定理得:BC==4,∵DF∥AC,∴△BEF∽△BCA,,即,∴,即,∴4x=3y,5(3﹣x)=3(x+y),∴y=,∴DE=CE=,故答案为:.16.如图,正方形纸片ABCD的边长为4,E是边CD的中点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,则GE的长为.【分析】证△ABF≌△DAE(ASA),得出AF=DE=2,BF=AE,由勾股定理得出BF =2,由S△ABF求出AH=,得出AG=2AH=,进而得出答案.解:∵四边形ABCD为正方形,∴AB=AD=CD=4,∠BAD=∠D=90°,∵E是边CD的中点,∴DE=CD=2,由折叠的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,在△ABF和△DAE中,,∴△ABF≌△DAE(ASA),∴AF=DE=2,BF=AE,在Rt△ABF中,BF===2,S△ABF=AB•AF=BF•AH,∴4×2=2AH,∴AH=,∴AG=2AH=,∵AE=BF=2,∴GE=AE﹣AG=2﹣=,故答案为:.17.已知二次函数y=x2+2mx+3的图象交y轴于点B,交直线x=5于点C,设二次函数图象上的一点P(x,y)满足0≤x≤5时,y≤3,则m的取值范围为m≤﹣2.5.【分析】因为a=1>0,故抛物线开口向上,故y在x=0或x=5时取得最大值,而当x =0时,y=x2+2mx+3=3;故x=5时,y=x2+2mx+3=25+10m+3≤3,即可求解.解:∵a=1>0,故抛物线开口向上,故y在x=0或x=5时取得最大值,当x=0时,y=x2+2mx+3=3,则x=5时,y=x2+2mx+3=25+10m+3≤3,解得:m≤﹣2.5;故答案为:m≤﹣2.5.18.如图,在平面直角坐标系中,点A1的坐标为(2,4),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x 于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2020的坐标为(22021,22020).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2020的坐标.解:由题意可得,点A1的坐标为(2,4),设点B1的坐标为(a,a),=,解得,a=4,∴点B1的坐标为(4,2),同理可得,点A2的坐标为(4,8),点B2的坐标为(8,4),点A3的坐标为(8,16),点B3的坐标为(16,8),……∴点B2020的坐标为(22021,22020),故答案为:(22021,22020).三、解答题(本大题共7小题,8分+9分+8分+8分+11分+12分+12分,共66分,解答要写出文字说明证明过程或演算步骤)19.为做好延迟开学期间学生的在线学习服务工作,盐城市教育局推出“中小学延迟开学期间网络课堂”,为学生提供线上学习,据统计,第一批公益课受益学生20万人次,第三批公益课受益学生24.2万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?【分析】(1)设增长率为x,根据“第一批公益课受益学生20万人次,第三批公益课受益学生24.2万人次“可列方程求解;(2)用24.2(1+増长率),计算即可求解.【解答】(1)设增长率为x,根据题意,得20(1+x)2=24.2解得x1=﹣2.1(舍去),x2=0.1=10%.答:增长率为10%(2)24.2(1+0.1)=26.62(万人)答:第四批公益课受益学生将达到26.62万人次.20.2020年国家教育部要求各地延期开学,并要求:利用网络平台,“停课不停学”.为响应号召,某校师生根据上级要求积极开展网络授课教学,八年级为了解学生网课发言情况,随机抽取该年级部分学生,对他们某天在网课上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:nA0≤n<2B2≤n<4C4≤n<6D6≤n<8E8≤n<10F10≤n<12(1)求出样本容量,并补全直方图,在扇形统计图中,“B”所对应的圆心角的度数是72°;(2)该年级共有学生500人,估计全年级在这天里发言次数不少于8的人数为90;(3)该校八年级组织一次网络授课经验专项视频会议,从F组里挑两名同学发言,其中该组中有两名男生,利用“树状图”或列表法求出正好选中一男一女的概率.【分析】(1)根据B、E两组发言人数的比,求出B所占的百分比和人数,从而得出样本容量;用总人数乘以C组和F组各占的百分比求出C组合F组的人数,即可补全统计图;用总人数乘以“B”所占的百分比求出,“B”所对应的圆心角的度数;(2)用该年级总人数乘以发言次数不少于8的人数所占的百分比即可;(3)根据题意画出树状图得出所有等情况数和正好选中一男一女的情况数,然后根据概率公式即可得出答案.解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言人数占20%,由直方图可知B组的人数是10人,∴被调查的学生人数为10÷20%=50(人),∴样本容量是50;C组的人数为50×30%=15(人),F组人数所占的百分比是1﹣6%﹣20%﹣30%﹣26%﹣8%=10%,则F组的人数是50×10%=5(人),在扇形统计图中,“B”所对应的圆心角的度数是360°×20%=72°;补图如下:故答案为:72°;(2)根据题意得:500×(8%+10%)=90(人),答:全年级在这天里发言次数不少于8的人数为90人;故答案为:90;(3)∵F组有5名学生,其中有两名男生,∴F组有3名女生,画树状图如下:共有20种等情况数,其中正好选中一男一女的有12种,则正好选中一男一女的概率是=.21.为了落实党的“精准扶贫”政策,A,B两城决定向C,D两乡运送肥料以支持农村生产.已知A,B两城共有肥料500吨,其中A城肥料比B城肥料少100吨,从A,B城往C,D两乡运肥料的平均费用如表:A城B城C乡20元/吨15元/吨D乡25元/吨30元/吨现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从B城运往D乡x吨肥料,总运费为y元,求y与x之间的函数关系,并说明如何安排运输才能使得总运费最小?【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从B城运往D乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从A城运往C乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式.解:(1)设A城有化肥a吨,B城有化肥b吨,根据题意,得,解得,答:A城和B城分别有200吨和300吨肥料;(2)设从B城运往D乡肥料x吨,则运往B城运往C乡(300﹣x)吨,从A城运往D乡肥料(260﹣x)吨,则运往C乡(x﹣60)吨,总运费为y元,根据题意,则:y=20(x﹣60)+25(260﹣x)+15(300﹣x)+30x=10x+9800,由于函数是一次函数,k=10>0,∵,∴60≤x≤260,所以当x=60时,运费最少,最少运费是10400元.22.数学活动课上,小明和小红要测量小河对岸大树BC的高度,小红在点A测得大树顶端B的仰角为45°,小明从A点出发沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【分析】(1)作DH⊥AE于H,解Rt△ADH,即可求出DH;(2)延长BD交AE于点G,解Rt△GDH、Rt△ADH,求出GH、AH,得到AG;设BC=x米,根据正切的概念用x表示出GC、AC,根据GC﹣AC=AG列出方程,解方程得到答案.解:(1)作DH⊥AE于H,如图1所示:在Rt△ADH中,∵=,∴AH=2DH,∵AH2+DH2=AD2,∴(2DH)2+DH2=(3)2,∴DH=3.答:小明从点A到点D的过程中,他上升的高度为3米;(2)如图2所示:延长BD交AE于点G,设BC=xm,由题意得,∠G=31°,∴GH=≈=5,∵AH=2DH=6,∴GA=GH+AH=5+6=11,在Rt△BGC中,tan∠G=,∴CG=≈=x,在Rt△BAC中,∠BAC=45°,∴AC=BC=x.∵GC﹣AC=AG,∴x﹣x=11,解得:x=16.5.答:大树的高度约为16.5米.23.如图,已知AB为⊙O的直径,AC为⊙O的切线,连结CO,过B作BD∥OC交⊙O 于D,连结AD交OC于G,延长AB、CD交于点E.(1)求证:CD是⊙O的切线;(2)若BE=4,DE=8,求CD的长;(3)在(2)的条件下,连结BC交AD于F,求的值.【分析】(1)连接OD,由直径所对的圆周角为直角及切线的性质,可得∠CAB=90°=∠ADB,从而可判定△AOC≌△DOC(SAS),由全等三角形的性质可得∠CDO=90°,从而由切线的判定定理可得答案;(2)设⊙O的半径为r,则OD=OB=r,由勾股定理解得r,再由平行线截线段成比例定理可得比例式,从而求得CD的长;(3)由CO∥BD,可判定△BDF∽△CGF;△EBD∽△EOC,从而可得比例式,结合相似三角形的性质可得答案.解:(1)证明:如图,连接OD,∵AB为⊙O的直径,AC为⊙O的切线,∴∠CAB=90°=∠ADB,∵OD=OB,∴∠DBO=∠BDO,∴CO∥BD,∴∠AOC=∠COD,∵AO=OD,CO=CO,∴△AOC≌△DOC(SAS),∴∠CAO=∠CDO=90°,∴OD⊥CD,且OD是半径,∴CD是⊙O的切线;(2)设⊙O的半径为r,则OD=OB=r,在Rt△ODE中,∵OD2+DE2=OE2,∴r2+82=(r+4)2,解得r=6,∴OB=6,∵CO∥BD,∴,∴CD=12;(3)∵CO∥BD,∴△BDF∽△CGF;△EBD∽△EOC.∴,.设OG=x,∵OG为△ABD的中位线,∴BD=2OG=2x,BE=4,OE=10,∴OC=5x,CG=4x,∴.24.已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE:AE:CE=1::2,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的边DF与边DM重合时(如图2),若OF=,求DN的长.【分析】(1)由正方形额等腰直角三角形的性质判断出△ADF≌△CDE即可;(2)设DE=k,表示出AE,CE,EF,判断出△AEF为直角三角形,即可求出∠AED;(3)证△MAO∽△DCO得===,在Rt△DAM中,根据勾股定理得到DM=2,求得DO=,根据相似三角形的性质即可得到结论.解:(1)CE=AF,在正方形ABCD和等腰直角三角形CEF中,FD=DE,CD=CA,∠ADC=∠EDF=90°,∴∠ADF=∠CDE,∴△ADF≌△CDE(SAS),∴CE=AF;(2)设DE=k,∵DE:AE:CE=1::2,∴AE=k,CE=AF=2k,∴EF=k,∵AE2+EF2=6k2+2k2=8k2,AF2=8k2,即AE2+EF2=AF2,∴△AEF为直角三角形,∴∠AEF=90°,∴∠AED=∠AEF+DEF=90°+45°=135°;(3)∵M是AB的中点,∴MA=AB=AD,∵AB∥CD,∴△MAO∽△DCO,∴===,在Rt△DAM中,AD=4,AM=2,∴DM=2,∴DO=,∵OF=,∴DF=,∵∠DFN=∠DCO=45°,∠FDN=∠CDO,∴△DFN∽△DCO,∴=,即=,∴DN=.25.如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A (0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.【分析】(1)将点A(0,1)和点B(3,﹣2)代入抛物物线y=﹣x2+bx+c中,列出方程组即印可解答;(2)过点D作DM∥y轴交AB于点M,D(a,﹣a2+2a+1),则M(a,﹣a+1),表达出DM,进而表达出△ABD的面积,利用二次函数的性质得出最大值及D点坐标;(3)由题意可知,∠ACE=∠ACO=45°,则△BCD中必有一个内角为45°,有两种情况:①若∠CBD=45°,得出△BCD是等腰直角三角形,因此△ACE也是等腰直角三角形,再対△ACE进行分类讨i论;②若∠CDB=45,根括圆的性质确定D1的位置,求出D1的坐标,再对△ACE与△CD1B相以分关讨论.解:(1)将点A(0,1)和点B(3,﹣2)代入抛物物线y=﹣x2+bx+c中得,解得∴y=﹣x2+2x+1(2)如图1所示:过点D作DM∥y轴交AB于点M,设D(a,﹣a2+2a+1),则M(a,﹣a+1).∴DM=﹣a2+2a+1﹣(﹣a+1)=﹣a2+3a∴∵有最大值,当时,此时图1(3)∵OA=OC,如图2,CF∥y轴,∴∠ACE=∠ACO=45°,∴△BCD中必有一个内角为45°,由题意可知,∠BCD不可能为45°,①若∠CBD=45°,则BD∥x轴,∴点D与点B于抛物线的対称轴直线x=1対称,设BD与直线=1交于点H,则H(1,﹣2)B(3,﹣2),D(﹣1,﹣2)此时△BCD是等腰直角三角形,因此△ACE也是等腰直角三角形,(i)当∠AEC=90°时,得到AE=CE=1,∴E(1.1),得到t=1(ii)当∠CAE=90时,得到:AC=AE=,∴CE=2,∴E(1.2),得到t=2图2②若∠CDB=45°,如图3,①中的情况是其中一种,答案同上以点H为圆心,HB为半径作圆,则点B、C、D都在圆H上,设圆H与对称左侧的物线交于另一点D1,则∠CD1B=∠CDB=45°(同弧所对的圆周角相等),即D1也符合题意设由HD1=DH=2解得n1=﹣1(含去),n2=3(舍去),(舍去),∴,则,(i)若△ACE∽△CD1B,则,即,解得(舍去)(ii)△ACE∽△BD1C则,即,解得(舍去)综上所述:所有满足条件的t的值为t=1或t=2或或图3。
学科网2020年中考数学第一次模拟考试【山东卷】数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是A.8 B.18C.18-D.-82.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为A.30.210-⨯B.40.210-⨯C.3210-⨯D.4210-⨯3.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是A.B.C.D.4.在下列图形中是轴对称图形的是A.B.C.D.5.如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,已知∠ADE=65°,则∠CFE的度数为A.60°B.65°C.70°D.75°6.若分式12x+在实数范围内有意义,则实数x的取值范围是A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣27.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是A.2、40 B.42、38 C.40、42 D.42、408.如图,AB为⊙O的直径,点C在⊙O上,∠A=40°,则∠B的度数为A.65°B.50°C.130°D.80°9.一元二次方程22x5x10-+=的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C 处测得山顶部A 的仰角为30度,在爬山过程中,每一段平路(CD 、EF 、GH )与水平线平行,每一段上坡路(DE 、FG 、HA )与水平线的夹角都是45度,在山的另一边有一点B (B 、C 、D 同一水平线上),斜坡AB 的坡度为2:1,且AB 长为9005,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C 出发到坡顶A 的时间为(图中所有点在同一平面内2≈1.41,3≈1.73)A .60分钟B .70分钟C .80分钟D .90分钟11.如图,在Rt ABC △中,AB AC =,4BC =,AG BC ⊥于点G ,点D 为BC 边上一动点,DE BC⊥交射线CA 于点E ,作DEC V 关于DE 的轴对称图形得到DEF V ,设CD 的长为x ,DEF V 与ABG V 重合部分的面积为y .下列图象中,能反映点D 从点C 向点B 运动过程中,y 与x 的函数关系的是A .B .C .D .12.如图是二次函数y =ax 2+bx +c 图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a ﹣b =0;③4a +2b +c <0;④若(﹣5,y 1),(3,y 2)是抛物线上两点,则y 1<y 2,其中说法正确的是A .①②B .②③C .①②④D .②③④第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 13.分解因式:a 3b –2a 2b +ab =___________.14.小峰抛掷一枚质地均匀硬币两次,则事件“至少出现一次正面朝上”的概率为___________. 15.若一个多边形的内角和为1800°,则这个多边形的对角线条数是___________.16.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图,相交于点P 的两条线段12,l l 分别表示小敏、小聪离B 地的距离()y km 与已用时间()x h 之间的关系,则x =___________时,小敏、小聪两人相距8.4km .17.如图,在△ABC 中,AB =4,若将△ABC 绕点B 顺时针旋转60°,点A 的对应点为点A ′,点C 的对应点为点C ′,点D 为A ′B 的中点,连接A D .则点A 的运动路径¼'AA与线段AD 、A ′D 围成的阴影部分面积是___________.18.如图,正方形ABCD 中,AB 5O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .则线段OF 长的最小值为___________.三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:()04cos3012122+--+-.20.(本小题满分6分)解不等式组3(21)4213213x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩…,并写出x 的所有整数解.21.(本小题满分6分)如图,在四边形ABCD 中,AD ∥BC ,点O 是对角线AC 的中点,过点O 作AC 的垂线,分别交AD 、BC 于点E 、F ,连接AF 、CE .试判断四边形AECF 的形状,并证明.22.(本小题满分8分)五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元. (1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.23.(本小题满分8分)如图,AB 是O e 的直径,点C 为»BD的中点,CF 为O e 的弦,且CF AB ⊥,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:BFG CDG∆≅∆;(2)若2AD BE==,求BF的长.24.(本小题满分10分)为了帮助贫困留守儿童,弘扬扶贫济困的传统美德,某校团委在学校举行“送温暖,献爱心”捐款活动,全校2000名学生都积极参与了该次活动.为了解捐款情况,随机调查了该校部分学生的捐款金额,并用得到的数据绘制出如下统计图1和图2,请根据相关信息,解答下列问题:(I)本次接受随机抽样调查的学生人数为_________________,图1中m的值是_________________.(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额超过20元的学生人数.25.(本小题满分10分)如图,直线y=12x与反比例函数y=kx(x>0)的图象交于点A,已知点A的横坐标为4.(1)求反比例函数的解析式;(2)将直线y=12x向上平移3个单位后的直线l与y=kx(x>0)的图象交于点C;①求点C的坐标;②记y =kx(x >0)的图象在点A ,C 之间的部分与线段OA ,OC 围成的区域(不含边界)为W ,则区域W 内的整点(横,纵坐标都是整数的点)的个数为.26.(本小题满分12分)(1)问题发现如图1,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =40°,连接AC ,BD 交于点M . 填空:①ACBD的值为__________;②∠AMB 的度数为__________. (2)类比探究如图2,在△OAB 和△OCD 中,∠AOB =∠COD =90°,∠OAB =∠OCD =30°,连接AC 交BD 的延长线于点M .请判断ACBD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =7,请直接写出当点C 与点M 重合时AC 的长.27.(本小题满分12分)如图,抛物线26y ax bx =++经过点A (–2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC , (1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.学科网2020年中考数学第一次模拟考试【山东卷】数学·全解全析1.【答案】A【解析】–8的相反数是8,故选A . 2.【答案】D【解析】将数0.0002用科学记数法表示为4210-⨯.故选D . 3.【答案】C【解析】从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选C . 4.【答案】B【解析】A .不是轴对称图形,故本选项不符合题意,B .是轴对称图形,故本选项符合题意,C .不是轴对称图形,故本选项不符合题意,D .是不轴对称图形,故本选项不符合题意.故选B . 5.【答案】B【解析】∵点D 、E 、F 分别是AB 、AC 、BC 的中点,∴DE //BC ,EF //AB ,∴∠ADE =∠B ,∠B =∠CFE ,∵∠ADE =65°,∴∠CFE =∠ADE =65°,故选B . 6.【答案】D 【解析】∵代数式12x +在实数范围内有意义,∴x +2≠0,解得:x ≠﹣2,故选D . 7.【答案】D【解析】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D . 8.【答案】B【解析】∵∠ACB =90°,∴∠B =90°−∠A =90°−40°=50°,故答案为50°,所以选B . 9.【答案】A【解析】求出根的判别式△,然后选择答案即可:∵△=()2542125817--⨯⨯=-=>0, ∴方程有有两个不相等的实数根.故选A . 10.【答案】C【解析】如图,作AP ⊥BC 于P ,延长AH 交BC 于Q ,延长EF 交AQ 于T .由题意:PAPB=2,AQ =AH +FG +DE ,CQ =CD +EF +GH ,∠AQP =45°,∵∠APB =90°,AB =9005,∴PB =900,PA =1800,∵∠PQA =∠PAQ =45°,∴PA =PQ =1800,AQ =2PA =18002,∵∠C =30°,∴PC =3PA =18003,∴CQ =18003﹣1800,∴小伟从C 出发到坡顶A 的时间=1800318001800265.742.3-+≈80(分钟),故选C . 11.【答案】A【解析】AB AC =Q ,AG BC ⊥,122BG GC BC ∴===,DEC QV 与DEF V 关于DE 对称,FD CD x ∴==.当点F 与G 重合时,FC GC =,即22x =,1x ∴=,当点F 与点B 重合时,FC BC =,即24=x ,2x ∴=,如图1,当01x ≤≤时,0y =,∴B 选项错误;如图2,当12x <≤时,()()22211222122y FG x x ==-=-,∴选项D 错误;如图3,当24x <≤时,()2211422y BD x ==-,∴选项C 错误.故选A . 12.【答案】A【解析】∵抛物线开口向上,∴a >0,∵抛物线对称轴为直线x =﹣2ba=﹣1,∴b =2a >0,则2a ﹣b =0,所以②正确;∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x =2时,y >0,∴4a +2b +c >0,所以③错误;∵点(﹣5,y 1)离对称轴的距离与点(3,y 2)离对称轴的距离相等,∴y 1=y 2,所以④不正确.故选A . 13.【答案】ab (a –1)2【解析】322a b a b ab -+=2(21)ab a a -+=2(1)ab a -.14.【答案】34【解析】由题意可得,出现的所有可能性是:(正,正)、(正,反)、(反,正)、(反,反),∴至少一次正面向上的概率为:34.故答案为:34. 15.【答案】54.【解析】设多边形的边数是n ,则(n –2)•180°=1800°,解得n =12, ∴多边形的对角线的条数是:()()3121215422n n --==.16.【答案】0.4或2.8【解析】设直线1l 的解析式为1y kx b =+, 将点()()1.6,4.8,2.8,0代入16 4.82.80k b k b +=⎧⎨+=⎩,解得411.2k b =-⎧⎨=⎩,则直线1l 的解析式为1411.2y x =-+,设直线2l 的解析式为2y nx =,将点()1.6,4.8代入得4.8 1.6n =,解得3n =, 则直线2l 的解析式为23y x =.Q 小敏、小聪两人相距8.4km ,128.4y y ∴-=,411.238.4x x ∴-+-=,11.278.4x ∴-=或11.278.4x -=-,解得:0.4x =或 2.8x =.17.【答案】8233π- 【解析】连接AA ′,∵将△ABC 绕点B 顺时针旋转60°,AB =4,∴A ′B =AB =4,∠ABA ′=60°,∴△ABA ′是等边三角形,∵点D 是A ′B 的中点,∴AD ⊥A ′B ,∴BD =AB cos ∠ABD =2,AD =AB sin ∠ABD =23,∴S 阴影=S 扇形BAA ′=S △ABD =2604360π⋅⨯–12×2×23=8233π-.故答案为:8233π- 18.【答案】522-.【解析】如图,连接DO ,将线段DO 绕点D 逆时针旋转90°得DM ,连接OF ,FM ,OM ,∵∠EDF =∠ODM =90°,∴∠EDO =∠FDM ,∵DE =DF ,DO =DM ,∴△EDO ≌△FDM (SAS ),∴FM =OE =2,∵正方形ABCD 中,AB =25,O 是BC 边的中点,∴OC =5,∴OD =22(25)(5)+=5,∴OM =2255+=52,∵OF +MF ≥OM ,∴OF ≥522-,∴线段OF 长的最小值为522-. 故答案为:522-.19.【答案】3.【解析】原式=4×3+1–23+2=23+1–23+2=3.20.【答案】5443x-≤<;1,0,1-【解析】解不等式①,得:54x≥-.解不等式②,得:43x<.则不等式组的解集为5443x-≤<.∴不等式组的整数解为:1,0,1-.21.【解析】四边形AECF为菱形.证明如下:∵AD∥BC,∴∠1=∠2,∵O是AC中点,∴AO=CO,在△AOE和△COF中12AOE COFAO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE≌△COF(AAS),∴AE=CF,∵EF⊥AC,OA=OC,∴AF=CF,AE=CE,∴AF=CF=AE=CE,∴平行四边形AECF为菱形.22.【解析】(1)设商品每件进价x元,乙商品每件进价y元,得32402130x yx y+=⎧⎨+=⎩解得:3070xy=⎧⎨=⎩,答:甲商品每件进价30元,乙商品每件进价70元;(2)设甲商品进a件,乙商品(100﹣a)件,由题意得,a≥4(100﹣a),解得a≥80,设利润为y元,则y=10a+20(100﹣a)=﹣10a+2000,∵y随a的增大而减小,∴要使利润最大,则a取最小值,∴a=80,∴y=2000﹣10×80=1200,答:甲商品进80件,乙商品进20件,最大利润是1200元.23.【解析】(1)∵C 是»BD的中点,∴»»CD BC =, ∵AB 是O e 的直径,且CF AB ⊥,∴»»BC BF =, ∴»»CDBF =,∴CD BF =, 在BFG ∆和CDG ∆中,∵F CDGFGB DGC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BFG CDG AAS ∆≅∆;(2)如图,过C 作CH AD ⊥交AD 延长线于点H ,连接AC 、BC ,∵»»CDBC =,∴HAC BAC ∠=∠,∵CE AB ⊥,∴CH CE =, ∵AC AC =,∴Rt AHC Rt AEC ∆≅∆,∴AE AH =, ∵CH CE =,CD CB =,∴()Rt CDH Rt CBE HL ∆≅∆, ∴2DH BE ==,∴224AE AH ==+=,∴426AB =+=, ∵AB 是O e 的直径,∴90ACB ∠=o ,∴90ACB BEC ∠=∠=o , ∵EBC ABC ∠=∠,∴BEC BCA ∆∆:, ∴BCBEAB BC=,∴26212BC AB BE =⋅=⨯=, ∴23BF BC ==.24.【解析】(1)10÷20%=50,16=32%50,故m =32. (Ⅱ)捐30元的人数为:50-(4+16+12+10)=8451610151210208301650x ⨯+⨯+⨯+⨯+⨯==Q∴这组样本数据的平均数为16∵在这组样本数据中,10出现了16次,出现次数最多,∴这组样本数据的众数为10∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,有1515152+=∴这组样本数据的中位数为15(III)∵捐款20元以上的学生占16 %∴捐款20元以上的学生人数是:200016%320⨯=答:估计该校捐款20元以上的学生约有320人. 25.【解析】(1)将x=4代入y=12x得,y=2.∴A(4,2).把A(4,2)代入y=kx,得k=xy=8.∴反比例函数的解析式为y=8x.(2)解:根据题意可知:l解析式为y=12x+3.由13,28.y xyx⎧=+⎪⎪⎨⎪=⎪⎩得112,4.xy=⎧⎨=⎩228,1.xy=⎧⎨=⎩--(舍去)∴C(2,4).(3)如图:4个.故答案为4.26.【解析】(1)问题发现:①如图1,∵∠AOB =∠COD =40°,∴∠COA =∠DOB ,∵OC =OD ,OA =OB ,∴△COA ≌△DOB (SAS ),∴AC =BD ,∴1ACBD,= ②∵△COA ≌△DOB ,∴∠CAO =∠DBO , ∵∠AOB =40°,∴∠OAB +∠ABO =140°,在△AMB 中,∠AMB =180°–(∠CAO +∠OAB +∠ABD )=180°–(∠DBO +∠OAB +∠ABD )=180°–140°=40°, (2)类比探究: 如图2,3ACBD=,∠AMB =90°,理由是: Rt △COD 中,∠DCO =30°,∠DOC =90°,∴303OD tan OC ︒==, 同理得:3033OB tan OA ︒==,∴OD OB OC OA =, ∵∠AOB =∠COD =90°,∴∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴3AC OCBD OD==,∠CAO =∠DBO ,在△AMB 中,∠AMB =180°–(∠MAB +∠ABM )=180°–(∠OAB +∠ABM +∠DBO )=90°; (3)拓展延伸:①点C 与点M 重合时,如图3,同理得:△AOC ∽△BOD ,。