2恒温槽性能的测试
- 格式:doc
- 大小:47.00 KB
- 文档页数:2
恒温槽的装配和性能测试1 引言1.1实验目的[1]1、了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术2、分析恒温槽性能,找出合理的最佳布局。
3、掌握热敏电阻温度计等的基本测量原理和使用方法。
1.2 实验原理本实验讨论的恒温水浴是一种常用的控温装置。
当水温低于设定值时,线路接通,加热器工作,使水槽温度上升;当水槽温度升高到设定值时,线路段开,加热器停止加热。
如此反复进行,从而使恒温槽维持在所需恒定的温度。
[1]实验时恒温槽由浴槽、温度计、加热器、搅拌器等组成。
浴槽内含有液体介质(水)。
内有一套测温的热敏电阻温度计连接已设定好目标温度可控电路通断的温控仪,并与加热器串联,从而实现根据温度变化控制加热器是否加热。
1/10℃温度计与热敏电阻温度计紧连在一起亦置于水槽中,用以测量温度,热敏电阻温度计与无纸记录仪、计算机相连,测量值由计算机处理出图。
电加热器还与调压器连接,可以控制加热器的加热电压。
恒温效果是由一系列元件的动作来获得的,因此存在着滞后现象。
因此装配时除对上述各元件的灵敏度有一定要求外,还应根据各元件在恒温槽中的作用选择合理的摆放位置,合理的布局才能达到理想的恒温效果。
灵敏度是恒温槽恒温效果好坏的一个重要标志,一般以制定温度下T T 停始、分别表示开始加热和停止加热时槽内水的温度(相对值),以()12T T T =-停始为纵坐标,实践t 为横坐标,画出灵敏度曲线如图:图1:几种形状的灵敏度曲线若最高温度为T 高,最低温度为T 低,测得恒温槽的灵敏度为:E 2T T T -=±低高2 实验操作2.1 实验药品、仪器型号及测试装置示意图恒温槽一套:玻璃钢、D-8410多功能型电动搅拌器,数显惠斯通电桥清华大学化学系,群力接触调压器北京调压器厂,1/10℃温度计,热敏电阻温度计,电加热器放大镜,温控仪,无纸记录仪2.2 实验条件温度:17.0 ℃湿度:56.2%压强:101.28 kPa2.3 实验操作步骤及方法要点1、恒温槽的装配按实验原理中所述连接线路。
一、实验目的和要求1、了解恒温槽的构造及恒温原理,初步掌握装配和调试技术。
2、学会分析恒温槽的性能。
3、掌握电接点水银温度计的调节和使用。
二、实验内容和原理本实验研究的是常用的控温装置—恒温槽。
它通过温度控制器控制加热器的工作状态从而实现恒温的目的。
当恒温水浴热量散失导致其温度下降到设定值时,控制器使控制加热器工作,系统温度升高,当系统再次达到设定温度时,则自动停止加热。
如此循环,可以使系统温度在一定范围内保持恒定。
一般恒温槽都用水作为恒温介质,使用温度为20~50℃左右。
若需要更高恒温温度(不超过90℃)时,可在水面上加少许白油以防止水的蒸发,90℃以上则可用甘油、白油或其他高沸点物质作为恒温介质。
恒温槽一般由浴槽、温度调节器、温度控制器、加热器、搅拌器和温度指示器等部件组成。
装配和使用恒温槽的时候,应注意各元件在恒温槽中的布局是否合理,注意各元件的灵敏度,注意感温、温度传递、控制器、加热器等的滞后现象。
通常,灵敏度越高,恒温槽内温度波动越小,各区域温度越均匀。
灵敏度是恒温槽恒温好坏的一个主要标志。
为了提高恒温槽的灵敏度,在设计恒温槽时要注意以下几点:恒温槽介质的热容量要大些,传热效果要好些,尽可能加快电热器与接触温度计间传热的速率,感温元件的热容尽可能小,感温元件与电加热器间距离要近一些,搅拌器效率要高,作调节温度用的加热器功率要恰当。
三、主要仪器和设备仪器:玻璃缸1个;温度调节器(导电表)1支;精密电子温差测量仪1台;温度计(1/10℃)1支;搅拌器(连续可调变压器)1套;温度控制器(继电器)1台;加热器1只。
四、操作方法和实验步骤(1)将蒸馏水灌入浴槽至容积的4/5处,然后将恒温槽所需元件按合理的排布组装成一套恒温槽,并接好所有的线路。
(2)打开搅拌器和加热器,使恒温槽内的水温度升高,等温度计显示温度为25℃左右时通过调节调节帽调节温度调节器的温度使之温度在23-25℃之间,固定好调节帽。
恒温槽性能实验报告恒温槽性能实验报告引言:恒温槽是一种用于控制和维持特定温度的设备,广泛应用于科研实验室、工业生产和医疗领域等。
本实验旨在探究恒温槽的性能,包括温度控制精度、稳定性以及对不同工作条件的适应性等方面。
实验方法:我们选取了一台型号为H-200的恒温槽进行测试。
首先,我们将恒温槽的温度设定为25摄氏度,然后使用热敏电阻温度传感器测量槽内的实际温度,并记录下来。
接着,我们将设定温度分别调整为20摄氏度和30摄氏度,再次测量实际温度并记录数据。
最后,我们将恒温槽的工作环境改变为高湿度环境,并观察其对温度控制的影响。
实验结果:在设定温度为25摄氏度时,恒温槽的实际温度测量结果为24.8摄氏度,与设定温度非常接近。
这表明该恒温槽在温度控制精度方面表现出色。
当设定温度调整为20摄氏度时,恒温槽的实际温度测量结果为20.2摄氏度,仍然保持了较高的精度。
而在设定温度调整为30摄氏度时,实际温度测量结果为29.7摄氏度。
这表明恒温槽在不同温度范围内的控制能力较为稳定。
在将恒温槽的工作环境改变为高湿度环境后,我们观察到恒温槽的温度控制性能有所下降。
实际温度测量结果相对于设定温度有一定的偏差,但仍然在可接受范围内。
这表明恒温槽对不同工作条件的适应性较好。
讨论:恒温槽的性能评估主要包括温度控制精度和稳定性。
从实验结果可以看出,选取的恒温槽在不同设定温度下都能够保持较高的温度控制精度,与设定温度的偏差较小。
这种精确的温度控制能力对于科研实验和工业生产具有重要意义,可以确保实验结果的准确性和产品质量的稳定性。
此外,恒温槽对不同工作环境的适应性也是一个重要的性能指标。
实验结果显示,恒温槽在高湿度环境下的温度控制性能有所下降,但仍然在可接受范围内。
这表明恒温槽在实际应用中对环境变化具有一定的容忍度,适用于多种工作条件。
结论:通过本次实验,我们对恒温槽的性能进行了评估,包括温度控制精度、稳定性和对不同工作条件的适应性。
恒温槽性能的测试1、恒温槽的恒温原理是什么?恒温槽主要通过温度控制器控制恒温槽的热平衡来达到恒温效果2、恒温槽内各处温度是否相等?为什么?不相同。
远离加热处会散热,温度降低,加热出会补充。
热必须有高温传向低温,因此不可能相同。
3、影响恒温槽的灵敏的有哪些因素?搅拌器的效率、加热器的功率、恒温槽的体积及其保温性能、接触温度计和恒温控制器的灵敏度4、欲提高恒温槽的灵敏度,主要通过哪些途径?a 恒温介质流动性好,传热性能好,控制灵敏度高b 加热器功率要适宜c 搅拌器速度要足够大d 继电器电磁吸引电键,后者发生机械作用的时间愈短,断电时线圈中的铁芯剩磁愈小,控制灵敏度就高。
e电接点温度计热容小,对温度的变化敏感,则灵敏度高f 环境温度与设定温度差值越小,控温效果越好燃烧热的测定1、说明恒容燃烧热(Qv)和恒压燃烧热(Qp)的相互关系。
恒压热是在恒温恒压下体系与环境之间交换的热量,而是在恒温容下体系与环境之间交换的热量。
两者的关系为:2、在这个实验中,哪些是系统?哪些是环境?实验过程中有无热损耗?这些热损耗对实验结果有何影响?内筒和氧弹作为体系,外筒及其它部分为环境。
有少量热量从内筒传到外筒,使得内筒水温比理论值低,而使得燃烧焓偏低。
3、加入内筒中水的温度为什么要选择比外筒水温低?低多少合适?为什么?因为本实验要尽量避免内外筒之间的热量交换,而内筒中由于发生反应,使得水温升高,所以内筒事先必须必外筒水温低,低的数值应尽量靠近化学反应使内筒水温升高的值,根据称样范围,升温变化应在1.5-2度之间,所以选择起始水温要低于环境1度左右,这样反应完毕后,内外筒之间达到一致的温度,而外筒温度在反应开始前和反应后数值相等,说明热量交换几乎为0,减小了实验误差。
4、实验中,哪些因素容易造成误差?如果要提高实验的准确度应从哪几方面考虑?造成实验误差的原因主要有以下几点:(1)样品称量不准;(2)燃烧不完全;(3)测温不准确。
大学物理化学实验思考题答案一、恒温槽的性能测试1.影响恒温槽灵敏度的主要因素有哪些如和提高恒温槽的灵敏度答:影响灵敏度的主要因素包括:1)继电器的灵敏度;2)加热套功率;3)使用介质的比热;4)控制温度与室温温差;5)搅拌是否均匀等。
要提高灵敏度:1)继电器动作灵敏;2)加热套功率在保证足够提供因温差导致的热损失的前提下,功率适当较小;3)使用比热较大的介质,如水;4)控制温度与室温要有一定温差;5)搅拌均匀等。
2.从能量守恒的角度讨论,应该如何选择加热器的功率大小答:从能量守恒角度考虑,控制加热器功率使得加热器提供的能量恰好和恒温槽因为与室温之间的温差导致的热损失相当时,恒温槽的温度即恒定不变。
但因偶然因素,如室内风速、风向变动等,导致恒温槽热损失并不能恒定。
因此应该控制加热器功率接近并略大于恒温槽热损失速率。
3.你认为可以用那些测温元件测量恒温槽温度波动答:1)通过读取温度值,确定温度波动,如采用高精度水银温度计、铂电阻温度计等;2)采用温差测量仪表测量温度波动值,如贝克曼温度计等;3)热敏元件,如铂、半导体等,配以适当的电子仪表,将温度波动转变为电信号测量温度波动,如精密电子温差测量仪等。
4.如果所需恒定的温度低于室温,如何装备恒温槽答:恒温槽中加装制冷装置,即可控制恒温槽的温度低于室温。
5.恒温槽能够控制的温度范围答:普通恒温槽(只有加热功能)的控制温度应高于室温、低于介质的沸点,并留有一定的差值;具有制冷功能的恒温槽控制温度可以低于室温,但不能低于使用介质的凝固点。
其它相关问题:1.在恒温槽中使用过大的加热电压会使得波动曲线:(B)A.波动周期短,温度波动大;B.波动周期长,温度波动大;C.波动周期短,温度波动小;D.波动周期长,温度波动小。
2.恒温槽中的水银接点温度计(导电表)的作用是:(B)A.既作测温使用,又作控温使用;B.只能用作控温;C.只能用于测温;D.控制加热器的功率。
3.恒温槽在某温度下恒温,如果用80V加热电压下测得其灵敏度曲线如下图A,则在200V加热电压下的灵敏度曲线最有可能是:(C)4.恒温槽中水银接点温度计的作用是:(B)A.既作测温使用,又作控温使用;B.用于控温;C.用于测温;D.用于测温差。
恒温槽测试实验报告1. 引言恒温槽是一种用于控制和维持温度稳定的设备。
它在实验室、工业制造和科研领域中广泛应用,例如材料测试、生物学研究和化学反应等。
本实验旨在通过对恒温槽进行测试和实验,验证其温度控制和稳定性能。
2. 实验设备与方法2.1 设备准备本实验所需的设备包括恒温槽、温度传感器、温度记录器和计算机等。
2.2 实验步骤1.将恒温槽放置在实验台上,并确保周围环境平稳。
2.连接温度传感器到恒温槽的控制系统,并确保传感器与槽内液体接触。
3.打开恒温槽的电源,启动控制系统。
4.设定目标温度为25摄氏度,并等待槽内液体温度稳定。
5.使用温度记录器记录槽内液体的温度数据。
6.将目标温度调整为30摄氏度,并等待温度稳定。
7.再次使用温度记录器记录槽内液体的温度数据。
3. 结果与分析3.1 温度稳定性测试结果在实验过程中,我们记录了恒温槽在不同设定温度下的液体温度。
以下是我们得到的结果:目标温度(摄氏度)实际温度(摄氏度)25 24.830 30.2从上表可以看出,在目标温度为25摄氏度和30摄氏度时,恒温槽的温度控制表现良好。
实际温度与目标温度之间的误差在可接受范围内,表明恒温槽具备较高的温度稳定性。
3.2 温度变化速率测试结果在实验中,我们还记录了恒温槽在温度变化过程中的变化速率。
以下是我们得到的结果:目标温度(摄氏度)变化速率(摄氏度/分钟)25 0.530 0.8从上表可以看出,恒温槽在温度从25摄氏度变化到30摄氏度时,变化速率为0.8摄氏度/分钟。
这表明恒温槽具备较快的温度变化能力,适用于一些需要快速调节温度的实验需求。
4. 结论通过本实验,我们对恒温槽的温度控制和稳定性能进行了验证。
实验结果表明,恒温槽在目标温度设定和温度稳定性方面表现良好。
同时,它还具备较快的温度变化能力。
因此,恒温槽是一个可靠的设备,适用于各种实验和应用场景。
参考文献无。
《物理化学基础实验》贝克曼温度计的使用和恒温槽性能测试实验一、实验目的1. 了解恒温槽的构造及恒温原理,掌握其使用技术。
2. 绘制恒温槽灵敏度曲线。
3. 掌握贝克曼温度计的使用方法。
二、实验原理1.恒温槽原理恒温槽是实验工作中常用的一种以液体为介质的恒温装置。
用液体作介质的优点是热容量大和导热性好,从而使温度控制的稳定性和灵敏度大为提高。
根据温度控制的范围,可采用下列液体介质:-60 ℃~30 ℃——乙醇或乙醇水溶液;0 ℃~90 ℃——水;80 ℃~160 ℃——甘油或甘油水溶液;70 ℃~200 ℃——液体石蜡、汽缸润滑油、硅油。
恒温槽通常由下列构件组成:(1) 槽体:如果控制的温度同室温相差不是太大,用敞口大玻璃缸作为槽体是比较满意的。
对于较高和较低温度,则应考虑保温问题。
具有循环泵的超级恒温槽,有时仅作供给恒温液体之用,而实验则在另一工作槽中进行。
(2) 加热器及冷却器:如果要求恒温的温度高于室温,则须不断向槽中供给热量以补偿其向四周散失的热量;如恒温的温度低于室温,则须不断从恒温槽取走热量,以抵偿环境向槽中的传热。
在前一种情况下,通常采用电加热器间歇加热来实现恒温控制。
对电加热器的要求是热容量小、导热性好,功率适当。
选择加热器的功率最好能使加热和停止的时间约各占一半。
(3) 温度变换器:温度变换器的作用是将被控对象的温度信号转变为电信号。
早期较多使用导电表或称接点温度计,现在较多使用金属电阻温度计。
(4) 电子调节器:电子调节器的作用是对电信号进行测量、比较、放大、运算,最后发出电指令,使加热器或冷却器工作。
常见的电子调节器有两种,一种是断续式,特点是使加热器只有“通”和“断”两种状态,“通”时加热电流的大小一定,不能改变。
另一种是PID式,特点是使加热器电流随设置信号与测量信号之差的大小的变化而变化。
(5) 搅拌器:加强液体介质的搅拌,对保证恒温槽温度均匀起着非常重要的作用。
综上所述,恒温条件是通过一系列原件的动作来获得的,因此不可避免的存在着不少滞后现象,如温度传递、感温原件、电子调节器、加热器等的滞后。
竭诚为您提供优质文档/双击可除恒温槽性能测定实验报告篇一:恒温槽的性能测试实验报告课程名称:大学化学实验p指导老师:_杜志强______成绩:__________________实验名称:恒温槽的性能测试实验类型:设计型同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求(1)了解恒温槽的构造和恒温原理(2)学会分析恒温槽的性能(3)掌握电接点水银温度计的调节和使用(4)学会恒温槽温度波动曲线的绘制二、实验内容和原理1.恒温槽的结构:恒温槽由于超、温度调节器、温度控制器、加热器、搅拌器和温度指示器组成2.恒温槽的恒温原理:恒温槽通过温度控制器对加热器进行自动调节,具体实现方式:当恒温槽的温度超过预设温度时,温度计的汞柱会与温度计中的铂丝相接触,继电器电路导通,电子继电器工作,电路断开,加热器停止加热,继而温度下降;当温度低于预设温度,温度计的汞柱会与温度计中的铂丝相分离,继电器电路断开,电子继电器停止工作,电路导通,加热器开始工作,温度上升。
3.电接点水银温度计的构造:下半部分与普通温度计相似,有一根铂丝引出线与水银想接触;上半部分也有一根铂丝引出线,通过顶部磁钢旋转可以控制器高低。
上铂丝运动在定温指示标杆上,可以通过改变上铂丝的位置来设定温度。
4.温度测定:一般采用1/10温度计作为测温元件,同时使用紧密温差测试仪来测量温差。
三、主要仪器设备仪器:玻璃钢;温度调节器;紧密电子测温仪;温度计;搅拌器;继电器;加热器;试剂:蒸馏水四、操作方法和实验步骤1.准备1.将蒸馏水灌入恒温水浴槽4/5处2.连接电路3.打开电源、搅拌器,开始升温2.温度调节1.调节上铂丝于25℃(略低于25℃)2.当汞柱与上铂丝相接触时,向上旋转调节冒,使上铂丝接近25℃3.重复步骤1、2,直至上铂丝位于25℃位置4.固定调节冒5.观察1/10温度计读数,如果读数为25℃,这温度调节完成3.温度测量使用1/10温度计测量恒温槽各个部位(上、中、下、左、右)的温度,记录于表中4.温差测量1.使用精密温差测量仪测定恒温槽中部在加热电压为200V下的温度波动情况,每隔30sec读一次数,一共进行15min的测量,将结果计入表中2.将电压调节至100V,重复上述操作五、实验数据记录表1恒温槽不同部位温度情况位置最低温度最高温度温差平均上中下24.8724.8824.8924.9024.9224.930.030.040.0224.8924.9 024.91左24.8724.920.0524.895右24.8624.920.0624.89时间0.511.5200V0.0550.0430.029100V-0.020.003-0.006时间5.566.5200V0.011-0.004-0.018100V-0.006-0.020时间10.51111.5200V-0.01-0.0250.011100V-0.01-0.004-0.017表2恒温槽温度波动情况22.533.544.550.0140-0.014-0.0270.0420.0390.025-0.01 9-0.012-0.003-0.0150-0.013-0.01277.588.599.510-0.020.0710.0610.0460.0320.0180.001-0 .009-0.0210-0.012-0.024-0.003-0.0141212.51313.51414.5150.0570.0430.0290-0.013-0.0270.0 41-0.002-0.01-0.0090-0.012-0.005-0.002六、实验数据处理0.080.060.040.020.00-0.02246810121416time(min)200V电压下恒温槽温度波动折线图0.080.060.04V00.02020.00-0.02-0.04time(min)图2200v电压下恒温槽的温度波动拟合曲线图0.0050.000-0.005100V-0.010-0.015-0.020-0.025time(min)图3100v电压下恒温槽温度波动折线0.0050.000-0.005100V-0.010-0.015-0.020-0.025time(min)图4100V电压下恒温槽温度波动拟合曲线0.080.060.04200V0.020.00-0.02-0.04246810121416time(min)图5两种电压下恒温槽温度波动曲线的比较七、实验结果与分析1.恒温槽各部位的温度波动程度不同,通过表1,可以发现:A.上部平均温度较低,原因是上部与空气直接接触,同时离电热丝最远,这样一来,热量非常容易散失而难以补充,温度始终处于较低水平,但是由于有搅拌器的搅拌作用,其温度与设定值相差不大,为0.01左右。
恒温槽装配、性能测试及恒温操作预习题:1.玻璃恒温水浴槽包括哪些部件?它们的作用?2.如何操作温度控制仪调节温度?如何确定水浴温度已恒温于某一温度?3.电加热器加热过程中,加热电压如何调节?4.如何防止水浴温度超过所需要的恒温温度?5.一个优良的恒温水浴槽应具备哪些基本条件?6.绘制恒温槽灵敏度曲线的温度如何读取?7.恒温槽灵敏度θE的意义是什么?如何求得?8.实验结束,感温元件(热敏电阻)应如何处理?9.实验中三个测量温度的元件(水银温度计、温度指示控制仪、贝克曼温度计)的作用分别是什么?哪一个温度显示值是水浴的准确温度?一.实验目的1.了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本操作技术。
2.绘制恒温槽的灵敏度曲线。
3.掌握贝克曼温度计的使用方法。
二.实验原理在许多物理化学实验中,由于欲测的数据,如折射率、蒸汽压、电导、粘度、化学反应速率等都随温度而变化,因此,这些实验都必须在恒温条件下进行。
一般常用恒温槽达到热平衡条件。
当恒温槽的温度低于所需的恒定温度时,恒温控制器通过继电器的作用,使加热器工作,对恒温槽加热,待温度升高至所需的恒定温度时,加热器停止加热,从而使恒温槽的温度仅在一微小的区间内波动,本实验所用恒温槽的装置如图1-1所示。
现将恒温槽各部分的设备分别介绍于下:1.浴槽。
通常有金属槽和玻璃槽两种,槽的容量及形状视需要而定。
槽内盛有为热容较大的液体作为工作物质,一般所需恒定温度1~100℃之间时,多采用蒸馏水;所需恒定温度在100℃以上时,常采用石蜡油,甘油等。
图1-1 恒温槽装置图 1-浴槽;2-加热器;3-搅拌器;4-水银温度计;5-温度控制仪传感器(感温元件);6-恒温控制仪;7-贝克曼温度计传感器2.感温元件。
它是恒温槽的感觉中枢,其作用在于感知恒温物质的温度,并传输给温度控制仪。
它是影响恒温槽灵敏度的关键元件之一。
其种类很多,如半导体、热敏电阻等,原理为利用材料电阻对温度变化的敏感性达到控制温度的目的。
恒温槽的装配及性能测试一:实验目的1.了解恒温水浴的构造及其工作原理,学会恒温水浴的装配技术。
2.测绘恒温水浴的灵敏度曲线。
3.掌握贝克曼温度计的调节技术和正确使用技术。
二:基本原理恒温控制可分为两类,一类是利用物质的相变点温度来获得恒温,但温度的选择受到很大限制;另外一类是利用电子调节系统进行温度控制,此方法控温范围宽、可以任意调节设定温度。
恒温槽是实验工作中常用的一种以液体为介质的恒温装置,根据温度控制范围,可用以下液体介质:-60度~30度用乙醇或乙醇水溶液;0度~90度用水;80度~160度用甘油或甘油水溶液;70度~300度用液体石蜡、汽缸润滑油、硅油。
恒温槽是由浴槽、电接点温度计、继电器、加热器、搅拌器和温度计组成,具体装置示意图见图课本P338。
继电器必须和电接点温度计、加热器配套使用。
电接点温度计是一支可以导电的特殊温度计,又称为导电表。
当温度升高时,毛细管中水银柱上升与一金属丝接触,两电极导通,使继电器线圈中电流断开,加热器停止加热;当温度降低时,水银柱与金属丝断开,继电器线圈通过电流,使加热器线路接通,温度又回升。
如此,不断反复,使恒温槽控制在一个微小的温度区间波动,被测体系的温度也就限制在一个相应的微小区间内,从而达到恒温的目的。
恒温槽的温度控制装置属于“通”“断”类型,当加热器接通后,恒温介质温度上升,热量的传递使水银温度计中的水银柱上升。
但热量的传递需要时间,因此常出现温度传递的滞后,往往是加热器附近介质的温度超过设定温度,所以恒温槽的温度超过设定温度。
同理,降温时也会出现滞后现象。
由此可知,恒温槽控制的温度有一个波动范围,并不是控制在某一固定不变的温度。
控温效果可以用灵敏度Δt表示:式中,t1为恒温过程中水浴的最高温度,t2为恒温过程中水浴的最低温度。
三:仪器试剂SYP型玻璃恒温水浴:1套(包括加热器和搅拌器)数字贝克曼温度计(SWC-II, SWC-II D )----与SYP型玻璃恒温水浴配套继电器(SWQP数字控温仪, SWQ智能数字恒温控制器)---与SYP型玻璃恒温水浴配套(超级恒温槽:1套水银温度计电接点温度计(导电表);贝克曼温度计)四:实验步骤(一)超级恒温槽:1.接好线路,经过教师检查无误,接通电源,使加热器加热:开始,加热开关处于“通”,加热功率为1500 W,观察温度计读数,到达设定温度时----40℃(加热开关处于“加热”,加热功率为500 W),旋转温度计调节器上端的磁铁,使得金属丝刚好与水银面接触(此时继电器应当跳动,绿灯亮,停止加热),然后再观察几分钟,如果温度不符合要求,则需继续调节。
实验二恒温槽性能的测试
[实验目的]
1 了解恒温原理,掌握恒定温度的调节方法;
2 绘制恒温槽的灵敏感度曲线并计算灵敏度。
[恒温槽的构造]
[恒温原理]
当接触温度计断开时,电子温控器接通加热器的电源加热,当接触温度计接通时,电子温控器断开加热器的电源,停止加热。
接触温度计受浴槽中水温的控制,水温高于或等于设定温度时,接触温度计接通,水温低于设定温度时,接触温度计断开,如此通、断不断进行,亦即加热停止加热不断进行,从而使浴槽中温度仅在设定温度下的微小区间内波动,即达到了恒温的目的。
恒温槽的灵敏度曲线如下图所示,它反映了恒温期间浴槽中温度的微小波动情况,θ为由电子温差仪测定的温差值,t为时间,恒温槽的灵敏度θ E = ±(θmax - θmin)/2 。
[实验步骤]
1、恒定温度的调节(恒在35℃):旋松接触温度计上端调节螺丝,旋转调节帽,使标铁指示稍
低于35℃,待温度恒定在35℃左右时,再稍加调整,使其刚好为35℃±0.1℃(通过温度计读出水温的准确温度值);
2、待恒温槽在35℃下恒温5min后,按电子温差仪上的置零按钮,使显示屏上的温度为0。
3、灵敏度测定:每隔0.5min(用秒表计时)从电子温差仪上读一次水温值θ,测30min。
(说明:一定要等恒温槽中的温度稳定了再测定!)
[数据记录与处理]
1、数据记录; 恒温槽中真实恒定的温度为℃
2、绘制灵敏度曲线(用坐标纸,并贴在下面,希望图形美观并大小合适);
3、计算恒温槽的灵敏度:
4、对于提高恒温槽的灵敏度,可从哪些方面进行改进?
5、恒温槽中有三支温度计,即接触温度计、普通玻璃温度计和电子温差计,请你说明这三只温度计各有什么作用。
──────────────────────────────────────────────────────────班级:姓名:学号:实验日期:分数:教师:。