第6章相关分析回归分析和聚类分析
- 格式:ppt
- 大小:859.51 KB
- 文档页数:67
第六章相关与回归分析第六章相关与回归分析(一)教学目的相关与回归分析是一种常用的统计分析方法。
通过本章的学习使学生对相关的概念、类型有一定的认识,掌握相关程度的测定方法、判定相关的类别以及回归分析的基本方法。
(二)基本要求要求了解相关的概念、类型,掌握相关程度的测定方法,学会线性回归分析的方法及检验。
(三)教学要点1、相关关系的概念、种类和特点;2、回归分析的概念、种类和特点;3、线性相关下相关程度的测定及判断;4、最小二乘估计的原理。
(四)教学时数6课时(五)教学内容本章共分两节:第一节相关分析一、函数关系与相关关系(一)确定性的函数关系1. 是一一对应的确定关系设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完全依赖于x ,当变量 x 取某个数值时, y 依确定的关系取相应的值,则称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量。
各观测点落在一条线上。
2. 当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化,变量间的这种相互关系,称为具有不确定性的相关关系(二)相关关系1. 变量间关系不能用函数关系精确表达2.一个变量的取值不能由另一个变量唯一确定3. 当变量 x 取某个值时,变量 y 的取值可能有几个4. 各观测点分布在直线周围二、相关关系的种类(一)按相关程度划分可分为完全相关、不完全相关、和不相关1.不相关。
如果变量间彼此的数量变化互相独立,则其关系为不相关。
自变量x变动时,因变量y的数值不随之相应变动。
2.完全相关。
如果一个变量的变化是由其他变量的数量变化所唯一确定,此时变量间的关系称为完全相关。
即因变量y的数值完全随自变量x的变动而变动,它在相关图上表现为所有的观察点都落在同一条直线上,这种情况下,相关关系实际上是函数关系。
所以,函数关系是相关关系的一种特殊情况。
3.不完全相关。
(1)请阐述什么是大数据分析。
大数据分析的主要任务主要有:第一类是预测任务,目标是根据某些属性的值,预测另外一些特定属性的值。
被预测的属性一般称为目标变量或因变量,被用来做预测的属性称为解释变量和自变量;第二类是描述任务,目标是导出概括数据中潜在联系的模式,包括相关、趋势、聚类、轨迹和异常等。
描述性任务通常是探查性的,常常需要后处理技术来验证和解释结果。
具体可分为分类、回归、关联分析、聚类分析、推荐系统、异常检测、链接分析等几种。
(2)大数据分析的类型有哪些?大数据分析主要有描述性统计分析、探索性数据分析以及验证性数据分析等。
(3)举例两种数据挖掘的应用场景?(1)电子邮件系统中垃圾邮件的判断电子邮件系统判断一封Email是否属于垃圾邮件。
这应该属于文本挖掘的范畴,通常会采用朴素贝叶斯的方法进行判别。
它的主要原理就是,根据电子邮件中的词汇,是否经常出现在垃圾邮件中进行判断。
例如,如果一份电子邮件的正文中包含“推广”、“广告”、“促销”等词汇时,该邮件被判定为垃圾邮件的概率将会比较大。
(2)金融领域中金融产品的推广营销针对商业银行中的零售客户进行细分,基于零售客户的特征变量(人口特征、资产特征、负债特征、结算特征),计算客户之间的距离。
然后,按照距离的远近,把相似的客户聚集为一类,从而有效地细分客户。
将全体客户划分为诸如:理财偏好者、基金偏好者、活期偏好者、国债偏好者等。
其目的在于识别不同的客户群体,然后针对不同的客户群体,精准地进行产品设计和推送,从而节约营销成本,提高营销效率。
(4)简述数据挖掘的分类算法及应用。
K-Means算法也叫作k均值聚类算法,它是最著名的划分聚类算法,由于简洁和效率使得它成为所有聚类算法中最广泛使用的。
决策树算法是一种能解决分类或回归问题的机器学习算法,它是一种典型的分类方法,最早产生于上世纪60年代。
决策树算法首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析,因此在本质上决策树是通过一系列规则对数据进行分类的过程。
回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。
回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。
回归分析可以分为线性回归和非线性回归两种。
线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。
回归分析可用于预测、解释和控制因变量。
回归分析的应用非常广泛。
例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。
回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。
相关分析是一种用来衡量变量之间相关性的方法。
相关分析通过计算相关系数来度量变量之间的关系的强度和方向。
常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。
Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。
相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。
相关分析的应用也非常广泛。
例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。
相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。
回归分析与相关分析的主要区别在于它们研究的对象不同。
回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。
此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。
综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。
回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。
回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。
相关分析和回归分析客观事物之间的关系分为函数关系和统计关系,函数关系也就是我们通常所说的一一对应的关系,而统计关系是指两事物之间的一种非一一对应的关系,即当一个变量x取一定值时,另一变量y无法依确定的函数取唯一确定的值。
事物之间的统计关系是普遍存在,且有的关系强,有的关系弱。
相关分析和回归分析都是以不同方式测度事物之间统计关系的有效工具。
实际应用中。
这两种分析方法经常互相结合渗透。
一、相关分析相关分析通过图形和数值两种方式,能够有效的揭示事物之间统计关系的强弱程度。
1、散点图能直观的显示数据之间的相关关系,可以利用曲线将点散布的主要轮廓描述出来,使数据的主要特征更突出。
如下图:研究04年四层金指的报废面积与入仓面积的相关关系上图看出:数据集中分布在直线周围,说明是高度正相关的。
2、相关系数散点图能直观的展现变量之间的统计关系,但并不精确。
相关系数以数值的方式精确的反映了两个变量间线形相关的强弱程度。
➢ R=yyxx xy L L L ,其中xx L =∑=--ni ix x12)(,∑=----=ni i i xy y y x x L 1))((,∑=--=ni i yy y y L 12)(.➢ 相关系数R 的取值在-1~+1之间。
➢ R>0表示两变量之间存在正的线性相关关系;R<0表示两变量之间存在负的线性相关关系。
➢ R=1表示两变量存在完全正相关;R=-1表示两变量存在完全负相关;R=0表示两变量不存在线性相关关系。
➢ |R|>0.8表示两变量之间具有较强的线性关系;|R|<0.3表示两变量之间的线性相关关系较弱。
上例中,R=0.974,说明报废面积与入仓面积之间是强正相关的。
二、一元线性回归在实际应用中,我们常常需要考虑某一现象与影响它的最主要因素的关系,回归分析不仅可以揭示变量x 对变量y 的影响大小,还可以由回归方程进行预测和控制。
一元线性回归是最简单的回归模型。
科研常用的实验数据分析与处理方法对于每个科研工作者而言,对实验数据进行处理是在开始论文写作之前十分常见的工作之一。
但是,常见的数据分析方法有哪些呢?常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。
1、聚类分析(Cluster Analysis)聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。
聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。
聚类分析所使用方法的不同,常常会得到不同的结论。
不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。
2、因子分析(Factor Analysis)因子分析是指研究从变量群中提取共性因子的统计技术。
因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。
因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。
这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。
在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。
3、相关分析(Correlation Analysis)相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。
相关关系是一种非确定性的关系,例如,以X和Y 分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。
4、对应分析(Correspondence Analysis)对应分析(Correspondence analysis)也称关联分析、R-Q 型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。