《垂径定理》教学设计课题
- 格式:docx
- 大小:152.45 KB
- 文档页数:11
《垂径定理》教学设计教案
课题:垂径定理
教学内容:垂径定理的概念、内容及应用
教学目标:
1.了解垂径定理的概念和内容。
2.掌握垂径定理的应用方法和技巧。
3.通过课堂练习和课后作业,提高学生的解题能力和思维能力。
教学重点和难点:
教学过程:
1.导入(5分钟)
教师首先介绍垂径定理的概念和基本应用,引出本节课的主题,并说明课程的目标和
教学重点及难点。
2.讲解(20分钟)
教师以图像和问题出发,引导学生理解垂径定理的概念和原理,然后逐步讲解垂径定
理的一般结论、特殊结论及不等式定理的推导过程和相关练习和问题。
教师带领学生完成一组课堂练习,然后让学生自己在课本和课堂练习中解决相关问题。
课堂练习中要带领学生培养解题的思路和解题的步骤,提高解题的能力和积极性。
教师邀请学生上台分享课上或课后做的垂径定理相关问题的解答和思路,并指导学生
如何巩固和加强相关知识和应用。
教师引导学生自主学习、思考和实践垂径定理相关问题,鼓励学生自主发现问题点,
深入思考问题的解决方案,并及时对学生的提问进行解答和指导。
教学方法:
1.课堂讲解
2.演示分析
3.课堂练习
4.展示分享
教学工具:
1.黑板
2.笔
3.投影仪
4.计算器
5.纸笔
教学评价:
2.课堂参与
4.家庭作业
5.期末考试
教学反思:
本节课通过注重理论知识的讲解,课程的练习和展示,进一步加深了学生对垂径定理的理解和应用能力。
但是还需要在今后的教学中加强对知识点的理解和掌握以及对学生思维能力的培养和提升。
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标:让学生掌握垂径定理的内容及其应用。
1.2 过程与方法目标:通过观察、分析、推理等方法,引导学生发现垂径定理。
1.3 情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力和思考能力。
第二章:教学内容2.1 教材分析:本节课主要通过探究圆中的性质,引导学生发现垂径定理。
2.2 学情分析:学生在学习本节课之前,已经掌握了圆的基本性质和几何图形的观察分析能力。
第三章:教学过程3.1 导入:通过展示一些与圆有关的实际问题,引发学生对圆的性质的思考。
3.2 新课导入:引导学生观察圆中的垂径关系,引导学生发现垂径定理。
3.3 讲解与演示:通过几何画板或实物模型,讲解垂径定理的内容,并展示其应用。
3.4 练习与讨论:设计一些练习题,让学生巩固垂径定理的理解,并进行小组讨论。
第四章:教学策略4.1 教学方法:采用问题驱动法、观察分析法、小组合作法等教学方法。
4.2 教学媒体:几何画板、实物模型、PPT等。
第五章:教学评价5.1 评价标准:学生能够正确理解垂径定理,能够运用垂径定理解决实际问题。
5.2 评价方式:课堂问答、练习题、小组讨论等。
第六章:教学资源6.1 教具准备:几何画板、实物模型、PPT、练习题等。
6.2 教学环境:教室环境舒适,学生座位有序,教学设备齐全。
第七章:教学步骤7.1 回顾圆的性质:回顾已学过的圆的性质,如圆的周长、直径等。
7.2 观察垂径关系:引导学生观察圆中的垂径关系,发现垂径定理。
7.3 讲解垂径定理:详细讲解垂径定理的内容,解释其含义和应用。
7.4 演示应用实例:通过几何画板或实物模型,展示垂径定理的应用实例。
7.5 练习与巩固:设计一些练习题,让学生运用垂径定理解决问题,巩固所学知识。
第八章:作业布置8.1 设计一些相关的练习题,让学生巩固垂径定理的理解。
8.2 鼓励学生自主探究,寻找生活中的圆的性质应用,增强对数学的应用意识。
垂径定理教学设计教学目标:(1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进展计算和证明;(2)进一步培育学生观看问题、分析问题和解决问题的力气;(3)通过圆的对称性,培育学生对数学的审美观,并激发学生对数学的宠爱.教学重点、难点:重点:垂径定理及其应用于计算和证明;难点:由圆的轴对称性进展垂径定理的探究.教学具体过程:学生已学过圆的根本概念和直角三角形勾股定理,本节的主要内容是圆的轴对称性和垂径定理.在教学活动中,不管那个层次的学生,都通过学生动手试验、观看、理解圆的轴对称性,并进一步组织学生试验、观看、觉察问题,探究和解决问题,完成对垂径定理的学习。
教学内容学生活动教师活动设计目的一、引入课题:引导学生按以以下图在圆形的纸片上折叠C COO 1、学生用折叠的方法探究圆的对称性。
1、教师引导学生觉察圆的轴对称性。
通过“演示试验——观察——感性——理性”引出垂径定理EA B2、在教师的D D 引导下,学生2、教师提问:图中有哪些对折再折叠通过折叠,得到圆的轴对称性:1、是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、猜测:图中有相等的线段和弧:AE=EB,= ,= 观看、分析、觉察和提出问题。
相等的线段和弧?二、垂径定理的证明:1、:在⊙O 中,CD 是直径,AB 是弦,CD ⊥AB ,垂足为 E . 求证:AE=EB ,=, = .1、学生在教师的引导下进展口头推理论证。
1、教师在学生论证的根底上,进展主要论证步骤的板书。
1、通过对垂径定理的证明,论证了定理的正确性。
C 学生在学习 到了利用圆 O的 轴 对 称E性,用对折AB法进展证明 D证明:连结OA 、OB ,则OA=OB . 又∵CD ⊥AB ,∴直线CD 是等腰△OAB 的对称轴,又是⊙O 的对称轴. ∴沿着直径CD 折叠时,CD 两侧的两个半圆重合,A 点和B点重合,AE 和 BE 重合, 、 分别和 、 重合.∴AE=BE ,= , = .的方法。
垂径定理优秀教案一、创意教学目标1. 知识与技能目标-学生能够准确说出垂径定理的内容,并能用数学语言进行表述。
“同学们,咱得知道啥是垂径定理哈。
就是垂直于弦的直径平分弦,并且平分弦所对的两条弧。
这可重要啦,得牢牢记住!”-学会运用垂径定理进行简单的几何计算和证明。
“咱学这个定理可不是光嘴上说说,得会用它做题。
比如说,给你一条弦和一个圆的直径,让你求弦长啥的,咱得会算。
”-能够通过观察、分析图形,发现并运用垂径定理解决实际问题。
“生活中也有很多跟垂径定理有关的事儿呢,咱得有双善于发现的眼睛,用这个定理去解决实际问题。
”2. 过程与方法目标-经历垂径定理的探究过程,培养学生的观察、分析、归纳能力。
“咱一起好好观察这些图形,看看能发现啥规律。
然后分析分析,最后归纳出垂径定理。
这个过程很重要,能让咱的脑袋瓜越来越灵。
”-通过小组讨论、合作学习,提高学生的交流与合作能力。
“同学们分组讨论讨论,说说自己对垂径定理的理解。
大家一起商量商量怎么用这个定理做题,互相学习,共同进步。
”-运用数学实验法,让学生亲身体验垂径定理的应用,培养学生的实践操作能力和创新思维。
“咱来做个小实验,用圆规和直尺画个圆,再画一条弦,然后用直径去垂直这条弦,看看有啥发现。
这样能让咱更好地理解这个定理。
”3. 情感态度与价值观目标-激发学生对数学的兴趣和好奇心,培养学生勇于探索的精神。
“这个垂径定理可有意思啦!大家好好探索探索,说不定能发现一些新的东西呢。
要有勇于探索的精神,别怕犯错。
”-让学生体会数学的美和实用性,增强学生学习数学的信心。
“看看这些图形,多漂亮啊!而且这个定理在生活中也很有用呢。
学好了数学,咱以后干啥都有底气。
”-培养学生的团队合作意识和竞争意识,提高学生的综合素质。
“小组之间可以比一比,看哪个组对垂径定理理解得更透彻,做题做得又快又好。
这样能让大家更有动力,也能培养咱的团队合作意识和竞争意识。
”二、独特教学重点与难点1. 教学重点-垂径定理的内容及应用。
垂径定理优秀教学设计(教案)一、教学内容本节课为人教版数学四年级下册第七单元《几何图形》中的“垂径定理”。
教材通过生活中的实例,引导学生探究圆的性质,掌握垂径定理,并运用该定理解决实际问题。
二、教学目标1. 让学生通过观察、操作、探究,掌握垂径定理,提高空间想象能力。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
三、教学难点与重点重点:掌握垂径定理及运用。
难点:理解并证明垂径定理。
四、教具与学具准备教具:PPT、黑板、粉笔。
学具:圆、直尺、三角板、圆规。
五、教学过程1. 情境引入:利用PPT展示生活中的圆形物体,如地球、篮球等,引导学生关注圆的性质。
提问:“你们知道圆有哪些性质吗?”2. 自主探究:3. 小组交流:4. 例题讲解:利用PPT展示例题,如:“在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。
”让学生独立思考,然后讲解解题思路,引导学生运用垂径定理解决问题。
5. 随堂练习:出示随堂练习题,如:“已知圆的直径为10cm,求证:垂直于直径的线段也是10cm。
”学生独立完成练习,教师巡回指导,及时纠正错误。
6. 巩固提高:出示拓展题目,如:“在圆中,已知一条弦长为8cm,求证:垂直于该弦的线段也是8cm。
”学生分组讨论,运用垂径定理解决问题。
7. 课堂小结:六、板书设计板书垂径定理板书内容:1. 圆的性质:圆中心到圆上任意一点的距离相等。
2. 垂径定理:垂直于直径的线段也是直径。
七、作业设计1. 请用文字和图形描述垂径定理。
答案:垂径定理:垂直于直径的线段也是直径。
在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。
答案:略。
八、课后反思及拓展延伸本节课通过生活中的实例,引导学生探究圆的性质,掌握垂径定理。
在教学过程中,注重培养学生的动手操作能力、观察能力和空间想象能力。
课堂练习和拓展延伸环节,让学生运用所学知识解决实际问题,提高学生的数学应用能力。
教学设计课程基本信息学科数学年级九年级学期秋季课题 3.3垂径定理(第一课时)教科书书名:《义务教育教科书数学(九年级上册)》出版社:浙江教育出版社教学目标1. 经历探索垂径定理的过程.2. 探索并掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.3. 会运用垂径定理解决一些简单的几何问题.教学内容教学重点:垂径定理教学难点:垂径定理的推导过程以及垂径定理的灵活运用教学过程一:创设情境引入新课问题1:如图,剪一个圆形纸片,沿着它的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?我们发现在折叠的过程中,直径两侧的部分会完全重合,因此我们得到结论:圆是轴对称图形任何一条直径所在直线都是它的对称轴.问题2:如图,在⊙O中任意作一条弦AB,观察下面的图形,它还是轴对称图形吗,若是,你能作出它的对称轴吗?二:师生互动共创新知已知:如图,CD是⊙O的直径,CD⊥AB,求证:AE=BE,AĈ=BĈ,AD̂=BD̂.分析:利用半径来构造等腰三角形来证明AE=BE;弧等可以利用同圆或等圆中两弧的端点重合来证明.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.几何语言:∵CD是直径,CD⊥AB,∴AE=BE,AĈ=BĈ,AD̂=BD̂. 三:应用新知层层深入B OACD下列图形是否适合用垂径定理呢?例1 已知AB̂,用直尺和圆规作这条弧的中点 分析:要平分弧,找到这条弧的中点,让我们联想到了垂径定理的 基本图形,所以第一步我们先连结AB ,然后再画出垂直弦AB 的过圆心的一条直线即可,所以第二步,作AB 的垂直平分线CD , 交弧AB 于点E.例2 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,求截面圆心O 到水面的距离.分析:为求O 到AB 的距离,我们先过点O 作OC ⊥AB ,即求OC的长度,观察图形发现OC 在直角三角形OBC 中,其中半径 OB=10,由于OC ⊥AB ,由垂径定理可得BC 等于AB 的一半等于8, 那么根据勾股定理即可得到OC 的长度.变式:一条排水管的截面如图所示。
垂径定理初中教案1. 知识与技能:通过观察、实验和证明,使学生理解圆的轴对称性,掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题。
2. 过程与方法:经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法。
3. 情感态度价值观:培养学生类比分析、猜想探索的能力,通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。
二、教学重难点1. 教学重点:利用圆的轴对称性研究垂径定理。
2. 教学难点:垂径定理的证明。
三、教学过程1. 导入:回顾轴对称图形的概念和性质,引出圆也是轴对称图形,并提问:圆的轴对称性有哪些应用?2. 探索:让学生分组进行实验,观察和记录圆中垂直于弦的直径的性质,引导学生发现垂径定理。
3. 证明:引导学生运用已学的三角形全等的知识,证明垂径定理。
在此过程中,教师应给予学生适当的提示和引导,帮助学生完成证明。
4. 应用:让学生运用垂径定理解决一些有关的证明与计算问题,巩固所学知识。
四、教学策略1. 采用问题驱动的教学方法,引导学生主动探索和发现垂径定理。
2. 利用分组实验,让学生亲身体验和观察圆的轴对称性,增强学生的实践能力。
3. 在证明过程中,引导学生运用已学的三角形全等的知识,培养学生的逻辑思维能力。
4. 设计一些有关的证明与计算问题,让学生运用所学知识解决实际问题,提高学生的应用能力。
五、教学评价1. 课堂讲解:关注学生的参与度和理解程度,观察学生在探索和证明过程中的表现。
2. 课后作业:布置一些有关的证明与计算问题,检验学生对垂径定理的掌握程度。
3. 学生互评:鼓励学生之间相互评价,共同提高。
六、教学反思本节课通过观察、实验和证明,使学生掌握了垂径定理,并能够运用它解决有关的证明与计算问题。
在教学过程中,注重了学生的参与和实践,培养了学生的逻辑思维能力和应用能力。
同时,通过问题驱动的教学方法,激发了学生的学习兴趣和探索精神。
《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。
2. 引导学生通过实际问题发现垂径定理。
教学内容:1. 引导学生回顾圆的性质和基本概念。
2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。
2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。
教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。
第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。
2. 培养学生通过几何推理解决问题的能力。
教学内容:1. 引导学生通过几何推理,探索垂径定理。
2. 引导学生验证垂径定理的正确性。
教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。
2. 组织学生进行小组讨论,分享各自的解题思路和方法。
教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。
第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。
2. 培养学生解决实际问题的能力。
教学内容:1. 引导学生学习和掌握垂径定理的应用方法。
2. 引导学生运用垂径定理解决实际问题。
教学活动:1. 引导学生学习和掌握垂径定理的应用方法。
2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。
教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。
第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。
2. 提高学生解决实际问题的能力。
教学内容:1. 引导学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学活动:1. 组织学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。
2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。
第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。
《垂径定理》教学设计单位:登封市大金店二中
授课教师:唐海广
《垂径定理》教学设计
一、学生起点分析
学生的知识技能基础:学生在七、八年级已经学习过轴对称图形的有关概念和性质,等腰三角形的对称性,以及本节定理的证明要用到的三角形全等的知识,在本章前两节课中也已经初步理解了圆的轴对称性和圆弧的表示等知识,具备探索证明几何定理的基本技能.
学生活动经验基础:在平时的学习中,学生已掌握探究图形性质的不同手段和方法,具备几何定理的分析、探索和证明能力.
二、教学任务分析
该节内容为1课时.圆是一种特殊图形,它是轴对称图形,学生通过类比等腰三角
形的轴对称性,能利用圆的轴对称性探索、证明得出圆的垂径定理及其逆
定理.具体地说,本节课的教学目标是:
知识与技能
1.利用圆的轴对称性研究垂径定理及其逆定理;
2.运用垂径定理及其逆定理解决问题.
过程与方法
1.经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法.
情感与态度
1.培养学生类比分析,猜想探索的能力.
2.通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神.
教学重点:利用圆的轴对称性研究垂径定理及其逆定理.
教学难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线.
三、教学设计分析
本节课设计了四个教学环节:
类比引入,猜想探索,知识应用,归纳小结
第一环节类比引入
活动内容:
1•等腰三角形是轴对称图形吗?
2•如果将一等腰三角形沿底边上的高对折,可以发现什么结论?
3.如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画
圆,得到的图形是否是轴对称图形呢?
活动目的:
通过等腰三角形的轴对称性向圆的轴对称性过渡,引导学生思考,培养学生类比分析的能力.
第二环节猜想探索
④ AC =BC ;® AD = BD •
证明:连接OA,OB,则OA=OB.
在Rt△OAM 和Rt△OBM 中,
••OA=OB , OM =OM ,
•••Rt△OAM 李t△OBM .
••AM = BM .
•点A和点B关于CD对称.
vQ O关于直径CD对称,
•当圆沿着直径CD对折时,点A与点B重合,
AC和BC重合,AD和B D重合•- C 一c C 一C
--AC =BC,AD =BD .
2 •证明完毕后,让学生自行用文字语言表述这一结论,最后提炼出垂径定理的内容一一垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
3•辨析:判断下列图形,能否使用垂径定理?
B
D
注意:定理中的两个条件缺一不可一一直径(半径),垂直于弦. 通过以上辨析,让学生对垂径定理的两个条件的必要性有更充分的认识.
4•垂径定理逆定理的探索
如图,AB是。
O的弦(不是直径),作一条平分AB的直径CD,交AB于
点M.
(1 )下图是轴对称图形吗?如果是,其对称轴是什么?
(2 )图中有哪些等量关系?说一说你的理由.
条件:① CD是直径;② AM=BM
结论(等量关系):③CD丄AB;
④ AC =BC ;® AD = BD .
让学生模仿垂径定理的证明过程,自行证明逆定理,并表述逆定理的内容
――平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
5•辨析:“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
如果该定理少了“不是直径”,是否也能成立?
活动目的:
活动1的主要目的是通过让学生猜想、 类比、探索和证明获得新知,从而得 到研究数学的多种方法的体会,获取经验;活动 2的主要目的是让学生通过对
定理表述反复的语言提炼,锻炼学生的归纳能力和严谨的表述能力, 并对定理的 条件和结论有更深刻的理解和认识;活动3的主要目的是通过反例使学生对定理 的严谨性有更深的认识;活动 4的主要目的与活动1相似,并让学生与活动1 类比,提高探索能力;活动5的主要目的与活动3相似.
实际教学效果:
在活动1中的证明时,学生对如何证明平分弦,可能会有一定困难,此时应 引导学生类比等腰三角形,通过连接 0A 、OB ,构造等腰三角形,并利用三角 形全等的知识来证明;另外,在证明直径平分弦所对的弧,也是一个难点,学生 会觉得比较难表述,这时应类比等腰三角形的轴对称性, 运用圆的轴对称性启发 引导;在活动2中,学生的说法可能不够准确、精炼,但教师应该鼓励学生坚持 勇于尝试,让学生互相指出说法的不足和缺陷, 互相加以修正,在反复的语言提 炼中对定理的条件和结论有更深刻的理解和认识,这也是一个自主构建的过程; 活动3是通过反例说明定理的条件的必要性和严谨性,要注意让学生学会通过反 例找出对应缺失的条件,提高学生对定理的理解;在活动4中,学生已经有了活 动1的经验,教师应放手让学生去猜想、 类比、探索和证明,增加学生对数学知反例: B
A
识的探索的领悟和经验;活动5与活动3相似.
第三环节知识应用
活动内容:讲解例题及完成随堂练习.
1•例:如图,一条公路的转弯处是一段圆弧(即图中CD
点0是CD所在圆的圆心),其中CD=600m , E为处上』
的一点,且0E丄CD,垂足为F, EF=90m.求这段弯路的半
径.
解:连接0C,设弯路的半径为Rm,则OF=(R-90)m .
••OE 丄CD
CF -CD - 600 300
2 2
根据勾股定理,得
OC2= CF2 + OF2
即R2=300 2+( R-90) 2.
解这个方程,得R=545.
所以,这段弯路的半径为545m.
2 •随堂练习1. 1400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2 米,求桥拱所在圆的半径.(结果精确到0.1米).
为什么?
有三种情况:(1)圆心在平行弦外;
(2 )圆心在其中一条弦上;
(3)圆心在平行弦内.
活动目的:活动1、2的主要目的是让学生应用新知识构造直角三角形,并 通过方程的方法去解决几何问题;活动 3的主要目的是让学生通过作垂线段构 造符合定理使用的条件,从而运用定理解决问题,以及培养学生解题中的分类思 想.
实际教学效果:
在活动4中,对于例题和随堂练习1教师要引导学生如何够造可以应用垂 径定理的几何构图,让学生积累如何添加辅助线的经验,以及体会到构造直角三 角形并利用勾股定理列方程在解决几何问题中的作用, 培养数形结合的思想.对 于随堂练习2
,教师要引3.随堂练习2.如果圆的两条弦互相平行,
那么这两条弦所夹的弧相等吗
?
导学生通过自行画图,探索分析符合条件图形有多少种情况:圆心在平行弦外,在其中一条弦上、在平行弦内,并通过添加辅助线构造可以应用垂径定理的条件,以及比较三种构图的共同点,得出说理的思路都是一样的结论.
第四环节归纳小结
活动内容:
学生交流总结
1.利用圆的轴对称性研究了垂径定理及其逆定理•
2 .解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连接半径等辅助线,为应用垂径定理创造条件.
活动目的:
通过回顾本节课的各个环节,鼓励学生交流自己的收获和感想,加深对本节课知识和探索方法的理解和掌握,培养学生养成归纳反思的学习习惯.
实际教学效果:
学生在互相交流中,对于归纳出来的内容,会有各种表述,大多都是围绕知识本身,教师应引导学生对探索知识的方法也能归纳反思.
四、教学设计反思
1 .要从培养学生学习方法的角度使用教材
教材为教师提供了基本的教学素材,但如何使用这些素材,教师完全可以根据学生的实际情况进行适当调整.学生在探索垂径定理的时候,其中一个难点在于如何证明垂径定理,这时通过类比等腰三角形的轴对称性,可以使学生对证明的思考得到突破,从而寻找出合理的证明方向.这既使学生掌握了新知识,也培养了学生的学习数学的类比思想和观察、猜想的能力.
实用标准文案
文档2.要鼓励学生敢于表述和善于纠错
垂径定理及其逆定理的文字表述是一个难点,教师如果直接给出,则学生就少了
一个锻炼表述能力和严谨地分析的机会. 因此,应该让学生大胆表述,并对各人的表述严谨分析,找出漏洞,反复提炼,直至得出正确的说法,使学生得到更好的锻炼.
3.注意改进的方面
本节课的另一个难点是如何添加辅助线,这在最后的归纳反思中应该要有足够的时间让学生交流讨论,但是限于本节课的时间,这是一个客观限制,不应该勉强在课堂上完成,效果并不理想,应该留作课后作业,让学生能通过更充分的讨论才得出结论,这样才能起到更好地交流和反思的作用.。