新人教版 垂径定理 教案
- 格式:doc
- 大小:268.00 KB
- 文档页数:7
人教版九年级上册《垂径定理》教案目录•课程介绍与目标•知识回顾与铺垫•垂径定理的引入与证明•垂径定理在几何问题中的应用•垂径定理在生活中的实际应用•课堂练习与巩固提高•总结回顾与拓展延伸01课程介绍与目标教材版本及内容概述教材版本人教版九年级上册内容概述本节课主要学习垂径定理及其推论,包括圆的性质、直径与弦的关系等。
垂径定理是圆的重要性质之一,在解决与圆有关的问题时具有广泛的应用。
知识与技能过程与方法情感态度与价值观教学目标与要求掌握垂径定理及其推论,理解圆的性质,能够运用垂径定理解决与圆有关的问题。
通过观察、实验、推理等活动,培养学生的探究能力和数学思维能力。
感受数学之美,体会数学在解决实际问题中的应用价值,培养学生的数学兴趣和自信心。
教学方法与手段教学方法采用启发式教学法,引导学生通过观察、实验、推理等活动主动探究垂径定理及其推论。
教学手段利用多媒体课件、几何画板等辅助教学工具,帮助学生更好地理解垂径定理及其推论。
同时,鼓励学生动手实践,通过实验操作验证垂径定理的正确性。
02知识回顾与铺垫圆的性质及定义圆是平面上所有与定点(圆心)距离等于定长(半径)的点的集合。
圆的性质包括圆心到圆上任意一点的距离都相等,即半径相等;圆上任意两点间的部分叫做圆弧,简称弧;连接圆上任意两点的线段叫做弦;经过圆心的弦叫做直径。
经过圆心的弦叫做直径。
直径是最长的弦,且一个圆有无数条直径。
直径半径弦连接圆心和圆上任意一点的线段叫做半径。
在同一个圆中,所有的半径都相等。
连接圆上任意两点的线段叫做弦。
弦的长度可能等于直径,也可能小于直径。
030201直径、半径、弦等概念顶点在圆心的角叫做圆心角。
圆心角的度数等于它所对的弧的度数。
圆心角圆上任意两点间的部分叫做圆弧,简称弧。
弧的长度与圆心角的度数成正比。
弧在同一个圆或等圆中,如果两个圆心角相等,那么它们所对的弧相等,所对的弦也相等。
弦与弧的关系圆心角、弧、弦之间的关系03垂径定理的引入与证明垂径定理的表述垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
《垂径定理》教学设计教案
课题:垂径定理
教学内容:垂径定理的概念、内容及应用
教学目标:
1.了解垂径定理的概念和内容。
2.掌握垂径定理的应用方法和技巧。
3.通过课堂练习和课后作业,提高学生的解题能力和思维能力。
教学重点和难点:
教学过程:
1.导入(5分钟)
教师首先介绍垂径定理的概念和基本应用,引出本节课的主题,并说明课程的目标和
教学重点及难点。
2.讲解(20分钟)
教师以图像和问题出发,引导学生理解垂径定理的概念和原理,然后逐步讲解垂径定
理的一般结论、特殊结论及不等式定理的推导过程和相关练习和问题。
教师带领学生完成一组课堂练习,然后让学生自己在课本和课堂练习中解决相关问题。
课堂练习中要带领学生培养解题的思路和解题的步骤,提高解题的能力和积极性。
教师邀请学生上台分享课上或课后做的垂径定理相关问题的解答和思路,并指导学生
如何巩固和加强相关知识和应用。
教师引导学生自主学习、思考和实践垂径定理相关问题,鼓励学生自主发现问题点,
深入思考问题的解决方案,并及时对学生的提问进行解答和指导。
教学方法:
1.课堂讲解
2.演示分析
3.课堂练习
4.展示分享
教学工具:
1.黑板
2.笔
3.投影仪
4.计算器
5.纸笔
教学评价:
2.课堂参与
4.家庭作业
5.期末考试
教学反思:
本节课通过注重理论知识的讲解,课程的练习和展示,进一步加深了学生对垂径定理的理解和应用能力。
但是还需要在今后的教学中加强对知识点的理解和掌握以及对学生思维能力的培养和提升。
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标:让学生掌握垂径定理的内容及其应用。
1.2 过程与方法目标:通过观察、分析、推理等方法,引导学生发现垂径定理。
1.3 情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力和思考能力。
第二章:教学内容2.1 教材分析:本节课主要通过探究圆中的性质,引导学生发现垂径定理。
2.2 学情分析:学生在学习本节课之前,已经掌握了圆的基本性质和几何图形的观察分析能力。
第三章:教学过程3.1 导入:通过展示一些与圆有关的实际问题,引发学生对圆的性质的思考。
3.2 新课导入:引导学生观察圆中的垂径关系,引导学生发现垂径定理。
3.3 讲解与演示:通过几何画板或实物模型,讲解垂径定理的内容,并展示其应用。
3.4 练习与讨论:设计一些练习题,让学生巩固垂径定理的理解,并进行小组讨论。
第四章:教学策略4.1 教学方法:采用问题驱动法、观察分析法、小组合作法等教学方法。
4.2 教学媒体:几何画板、实物模型、PPT等。
第五章:教学评价5.1 评价标准:学生能够正确理解垂径定理,能够运用垂径定理解决实际问题。
5.2 评价方式:课堂问答、练习题、小组讨论等。
第六章:教学资源6.1 教具准备:几何画板、实物模型、PPT、练习题等。
6.2 教学环境:教室环境舒适,学生座位有序,教学设备齐全。
第七章:教学步骤7.1 回顾圆的性质:回顾已学过的圆的性质,如圆的周长、直径等。
7.2 观察垂径关系:引导学生观察圆中的垂径关系,发现垂径定理。
7.3 讲解垂径定理:详细讲解垂径定理的内容,解释其含义和应用。
7.4 演示应用实例:通过几何画板或实物模型,展示垂径定理的应用实例。
7.5 练习与巩固:设计一些练习题,让学生运用垂径定理解决问题,巩固所学知识。
第八章:作业布置8.1 设计一些相关的练习题,让学生巩固垂径定理的理解。
8.2 鼓励学生自主探究,寻找生活中的圆的性质应用,增强对数学的应用意识。
垂径定理优秀教学设计(教案)一、教学内容本节课为人教版数学四年级下册第七单元《几何图形》中的“垂径定理”。
教材通过生活中的实例,引导学生探究圆的性质,掌握垂径定理,并运用该定理解决实际问题。
二、教学目标1. 让学生通过观察、操作、探究,掌握垂径定理,提高空间想象能力。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
三、教学难点与重点重点:掌握垂径定理及运用。
难点:理解并证明垂径定理。
四、教具与学具准备教具:PPT、黑板、粉笔。
学具:圆、直尺、三角板、圆规。
五、教学过程1. 情境引入:利用PPT展示生活中的圆形物体,如地球、篮球等,引导学生关注圆的性质。
提问:“你们知道圆有哪些性质吗?”2. 自主探究:3. 小组交流:4. 例题讲解:利用PPT展示例题,如:“在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。
”让学生独立思考,然后讲解解题思路,引导学生运用垂径定理解决问题。
5. 随堂练习:出示随堂练习题,如:“已知圆的直径为10cm,求证:垂直于直径的线段也是10cm。
”学生独立完成练习,教师巡回指导,及时纠正错误。
6. 巩固提高:出示拓展题目,如:“在圆中,已知一条弦长为8cm,求证:垂直于该弦的线段也是8cm。
”学生分组讨论,运用垂径定理解决问题。
7. 课堂小结:六、板书设计板书垂径定理板书内容:1. 圆的性质:圆中心到圆上任意一点的距离相等。
2. 垂径定理:垂直于直径的线段也是直径。
七、作业设计1. 请用文字和图形描述垂径定理。
答案:垂径定理:垂直于直径的线段也是直径。
在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。
答案:略。
八、课后反思及拓展延伸本节课通过生活中的实例,引导学生探究圆的性质,掌握垂径定理。
在教学过程中,注重培养学生的动手操作能力、观察能力和空间想象能力。
课堂练习和拓展延伸环节,让学生运用所学知识解决实际问题,提高学生的数学应用能力。
人教版数学九年级上册24.1.2《垂径定理》教案2一. 教材分析《垂径定理》是人教版数学九年级上册第24章第一节的一部分,主要介绍了圆中垂径定理的内容。
垂径定理是指:圆中,如果一条直径的两端点分别连接圆上两点,那么这条直径垂直于连接这两点的弦。
这一定理是九年级学生学习圆的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、直径等。
但是,对于垂径定理的理解和运用还需要进一步引导。
此外,学生对于几何图形的观察和分析能力有待提高,因此需要通过实例讲解和动手操作来帮助学生理解和掌握垂径定理。
三. 教学目标1.让学生理解垂径定理的内容,并能够运用垂径定理解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.提高学生的观察和分析能力,培养学生的合作意识和解决问题的能力。
四. 教学重难点1.重点:理解并掌握垂径定理的内容。
2.难点:如何运用垂径定理解决实际问题。
五. 教学方法1.实例讲解:通过具体的图形和实例,讲解垂径定理的内容和运用。
2.动手操作:让学生亲自动手画图和验证垂径定理,提高学生的实践能力。
3.小组讨论:学生进行小组讨论,分享学习心得和解决问题的方法。
4.问题解决:引导学生运用垂径定理解决实际问题,培养学生的解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示垂径定理的图形和实例。
2.教学素材:准备一些相关的几何图形和题目,用于讲解和练习。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示垂径定理的图形和实例,引导学生观察和分析,然后讲解垂径定理的内容和证明过程。
3.操练(10分钟)教师给出一些相关的题目,让学生亲自动手画图和验证垂径定理,提高学生的实践能力。
《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。
2. 引导学生通过实际问题发现垂径定理。
教学内容:1. 引导学生回顾圆的性质和基本概念。
2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。
2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。
教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。
第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。
2. 培养学生通过几何推理解决问题的能力。
教学内容:1. 引导学生通过几何推理,探索垂径定理。
2. 引导学生验证垂径定理的正确性。
教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。
2. 组织学生进行小组讨论,分享各自的解题思路和方法。
教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。
第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。
2. 培养学生解决实际问题的能力。
教学内容:1. 引导学生学习和掌握垂径定理的应用方法。
2. 引导学生运用垂径定理解决实际问题。
教学活动:1. 引导学生学习和掌握垂径定理的应用方法。
2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。
教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。
第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。
2. 提高学生解决实际问题的能力。
教学内容:1. 引导学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学活动:1. 组织学生进行垂径定理的知识巩固练习。
2. 引导学生运用垂径定理解决更复杂的问题。
教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。
2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。
第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。
垂径定理
教学目标
1.知识与技能
(1)探索并理解垂径定理
(2)熟练掌握垂径定理及其逆定理
2.过程与方法
(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动。
理解定理的推导,掌握定理及公式。
(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流。
3.情感、态度与价值观
经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望。
教学重难点
1.垂径定理及其运用。
2.探索并证明垂径定理及利用垂径定理解决一些实际问题。
教学方法讲授法演示法
教学过程讨论
修改一、复习引入
(学生活动)请同学口答下面问题(提问一、两个同学)
复习上节课内容:包括圆的概念以及与圆相关的概念
二、探索新知
(实践)把一个圆沿着它的任意一条直径对折,重复几次,你发
现了什么?由此你能得到什么结论?
结论:
圆是轴对称图形,其对称轴是任意一条过圆心的直线。
之间距离。
=7cm,。
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能:让学生掌握垂径定理的内容及其应用。
培养学生运用几何知识解决实际问题的能力。
1.2 过程与方法:通过观察、猜想、证明的过程,让学生体验数学的探究过程。
运用图形计算器或信息技术工具,帮助学生更好地理解垂径定理。
1.3 情感态度与价值观:培养学生对数学的兴趣和自信心。
培养学生合作交流的能力,提高学生的团队协作能力。
第二章:教学内容2.1 教材分析:分析教材中关于垂径定理的定义、证明和应用。
理解垂径定理在圆的性质和几何图形中的应用。
2.2 学情分析:了解学生对圆的基本知识和垂线的概念。
了解学生对几何证明的掌握程度,为学生提供必要的支持。
第三章:教学重难点3.1 教学重点:让学生掌握垂径定理的证明过程和定理的内容。
能够运用垂径定理解决相关的几何问题。
3.2 教学难点:理解并证明垂径定理。
灵活运用垂径定理解决实际问题。
第四章:教学方法与手段4.1 教学方法:采用问题驱动的教学方法,引导学生观察、猜想、证明。
运用小组合作学习,鼓励学生互相交流、讨论。
4.2 教学手段:使用图形计算器或信息技术工具,展示几何图形,帮助学生更好地理解垂径定理。
提供相关的练习题和案例,供学生实践和应用垂径定理。
第五章:教学过程5.1 导入:通过引入实际问题或情境,激发学生的兴趣和好奇心。
引导学生观察和猜想垂径定理的内容。
5.2 探究与证明:引导学生进行小组合作学习,共同探究垂径定理的证明过程。
引导学生运用几何知识和证明方法,进行逻辑推理和证明。
5.3 应用与练习:提供相关的练习题和案例,让学生运用垂径定理解决问题。
引导学生进行自主学习和合作交流,解答练习题和案例。
鼓励学生反思自己的学习过程,提出问题和建议,为后续学习做好准备。
1. 导入新课通过展示实际问题,引入垂径定理的概念和意义。
提供具体的垂径定理案例,让学生观察和分析,引导学生猜想垂径定理的内容。
第五章:垂径定理的证明通过引导学生运用已有知识,尝试证明垂径定理。
《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标理解垂径定理的概念和意义。
学会运用垂径定理解决实际问题。
1.2 过程与方法目标通过观察和实验,发现垂径定理的规律。
学会运用几何画图工具,准确地画出垂直平分线。
1.3 情感态度与价值观目标培养学生的观察能力和思维能力。
培养学生的合作意识和解决问题的能力。
第二章:教学内容2.1 教材分析介绍垂径定理的内容和证明过程。
通过实际例题,展示垂径定理的应用。
2.2 学情分析学生已经掌握了直线、圆的基本概念和性质。
学生具备一定观察和实验的能力。
第三章:教学过程3.1 导入新课通过一个实际问题,引发学生对垂径定理的思考。
引导学生观察和实验,发现垂径定理的规律。
3.2 探究与发现学生分组进行实验,观察垂直平分线与弦的关系。
引导学生总结垂径定理的表述。
3.3 知识讲解讲解垂径定理的证明过程。
通过示例,解释垂径定理的应用。
3.4 练习与巩固学生独立完成一些练习题,巩固对垂径定理的理解。
教师引导学生互相讨论和解答问题。
第四章:教学评价4.1 课堂评价教师通过观察学生的实验和练习情况,评价学生对垂径定理的理解和应用能力。
学生之间互相评价,分享解题经验和思路。
4.2 课后评价教师布置一些相关的课后作业,检验学生对垂径定理的掌握程度。
学生通过完成作业,进一步巩固和提高垂径定理的应用能力。
第五章:教学资源5.1 教材教师使用的教材,包括课本和相关教辅材料。
5.2 实验材料学生分组进行实验所需的材料,如几何画图工具、圆规、直尺等。
5.3 多媒体教学资源利用多媒体课件和教学视频,帮助学生更好地理解和掌握垂径定理。
第六章:教学策略6.1 讲授法教师通过讲解垂径定理的证明过程和应用实例,引导学生理解和掌握知识点。
6.2 实验法学生通过分组实验,观察和验证垂径定理,培养动手能力和观察能力。
6.3 讨论法教师组织学生进行小组讨论,分享解题经验和思路,促进互动交流。
第七章:教学难点与重点7.1 教学难点学生对垂径定理的证明过程的理解和应用。
垂径定理教学设计教学设计:垂径定理教学目标:1.理解垂径定理的定义和原理;2.掌握应用垂径定理解决问题的方法;3.培养学生的逻辑思维和证明能力。
教学步骤:一、导入(15分钟)1.通过提问的方式,引出垂径定理的概念和作用,激发学生对该定理的兴趣。
2.给学生展示一些实际生活中使用垂径定理的例子,如建筑设计、地理测量等,说明学习垂径定理的重要性。
二、理解垂径定理(30分钟)1.引导学生观察和发现:在一个圆内,以圆心为端点的半径与圆上条切线之间的关系。
2.引导学生总结并给出垂径定理的定义:在一个圆内,以圆心为端点的半径与圆上的切线垂直。
3.通过给出几个具体的案例,帮助学生理解垂径定理的意义和应用。
三、应用垂径定理解决问题(30分钟)1.给学生出示一些具体问题,引导他们应用垂径定理解决问题。
2.阐述解决问题的一般步骤:根据问题条件,确定圆心、半径和切线,应用垂径定理判断是否垂直。
3.给学生分组讨论解决问题的方法,并在黑板上进行总结和讨论。
四、拓展练习(30分钟)1.给学生分发一些练习题,让他们独立或小组完成,并在课堂上进行讲解和讨论。
2.引导学生思考问题的多个解法和证明的不同方法,培养他们的思考能力和证明能力。
3.鼓励学生提出疑问和讨论,引导他们思考如何应用垂径定理解决更复杂的问题。
五、总结(15分钟)1.综合学生的讨论和解答,总结垂径定理的定义、应用和解决问题的方法。
2.提出作业:让学生写一篇500字以上的短文,总结垂径定理的原理和应用,并分析具体案例。
3.回顾整个课堂内容,引导学生思考学习垂径定理的感受和收获。
教学资源:1.教师准备的课件,包括垂径定理的定义、案例和应用;2.练习题,用于课堂练习和讨论;3.学生课本和笔记本,用于记录课堂内容和思考问题。
教学评价:1.在课堂上观察学生的参与情况,检查他们对垂径定理的理解和应用;2.根据学生的讨论和解答,评价他们的思考能力和证明能力;3.根据学生的作业,评价他们对垂径定理的理解和总结能力。
垂径定理教学设计〔共19篇〕篇1:垂径定理教学反思垂径定理教学反思本节课的教学目的是使学生理解圆的轴对称性,掌握垂径定理,并学会运用垂径定理解决有关弦、弧、弦心距以及半径之间的证明和计算问题。
垂径定理是圆的轴对称性的重要表达,是今后解决有关计算、证明和作图问题的重要根据,它有着广泛的应用,因此,本节课的教学重点是:垂径定理及其应用。
垂径定理的推导利用了圆的轴对称性,它是一种运动变换,这种证明方法学生不常用到,与严格的逻辑推理比拟,在证明的表述上学生会发生困难,因此垂径定理的推导是本节课的难点。
这节课我通过七个环节来完本钱节课的教学目的,采用了类比,启发等教学方法。
圆是轴对称图形,每一条直径所在的直线都是对称轴。
这点学生理解的很好。
根据这个性质先按课本进展合作学习1.任意作一个圆和这个圆的任意一条直径CD;2.作一条和直径CD的垂线的弦,AB与CD相交于点E.提出问题:把圆沿着直径CD所在的直线对折,你发现哪些点、线段、圆弧重合?在学生探究的根底上,得出结论:〔先介绍弧相等的概念〕①EA=EB;②AC=BC,AD=BD.理由如下:∵∠OEA=∠OEB=Rt∠,根据圆的轴轴对称性,可得射线EA与EB重合,∴点A与点B重合,弧AC和弧BC重合,弧AD和弧BD重合。
∴EA=EB,AC=BC,AD=BD.然后把此结论归纳成命题的形式:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的`弧。
垂径定理的几何语言∵CD为直径,CD⊥AB〔OC⊥AB〕∴EA=EB,AC=BC,AD=BD.在学生掌握了垂径定理后,及时应用定理画图和解决实际问题,练习由根底到进步,层层深化,学生很有兴趣。
做完题目后总计解题的主要方法:〔1〕画弦心距是圆中常见的辅助线;〔2〕半径〔r〕、半弦、弦心距〔d〕组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长本节课缺乏之处是在处理垂径定理的推论时,应归纳相关垂径定理的五个元素:直径、弦中点、垂直、优弧中点、劣弧中点的规律:“知二得三”。
人教版垂径定理优秀教案(共两篇)课题:24.1.2垂直于弦的直径(1)教学目标:1. 探索圆的对称性,进而得到垂直于弦的直径所具有的性质;2. 能够利用垂直于弦的直径的性质解决相关实际问题.教学重点:垂直于弦的直径的性质及证明.教学难点:利用垂直于弦的直径的性质解决实际问题.教学过程:一、情境创设1、圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。
2、如图24-2-1,AB是⊙O的一条弦,直径CD⊥AB于E(1) 它是轴对称图形吗?若是,对称轴是什么?为什么?是。
对称轴是直线CD。
理由:连结OA、OB∵OA=OB,OE⊥AB ∴AE=BE∴CD既是△OAB的对称轴,又是⊙O的对称轴。
(2) 图中有哪些相等的线段和弧?为什么?∵把圆沿直径CD折叠,CD两侧的两个半圆重合,点A与点B重合∴AE与BE重合,弧AD与BD重合,弧AC与BC重合。
二、新课讲授:归纳:结合图形,用符号语言表示⊙O中,CD为直径(知2推3)CD⊥AB于E用文字语言表示:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
垂径定理的条件有两个,结论有三个,共五个事项。
三、例题讲解:例1.(1)如图24-2-2,已知在⊙O中,弦AB的长为8cm,直径CD⊥AB于E,OE=3 cm,求⊙O的半径。
解:连结OA∵OE⊥AB于E ,∴AE=AB=4 cmRt△AOE中,∠AEO=900 ,∴OA2=AE2+OE2又OE=3 cm, ∴OA2=25 ∵OA>0,∴OA=5 cm(2)如图24-2-3,在⊙O中,弦AB的长为8cm,半径OD⊥AB 于E,DE=2 cm,求⊙O的半径。
解:连结OA∵OE⊥AB于E ,∴AE=AB=4 cmRt△AOE中,∠AEO=900 ,∴OA2=AE2+OE2设OA=x cm,则OD= x cm, ∴OE= (x-2) cm∴x2=(x-2)2+16 解得x=5 ∴OA=5 cm点拨:在半径,弦的计算问题中,结合应用垂径定理和勾股定理,就可以转化成直角三角形的问题。
垂径定理教案[教案]主题:垂径定理教学方案教学目标:1. 了解垂径定理的概念和相关性质;2. 掌握垂径定理在几何问题中的应用方法;3. 提高学生的思维逻辑能力和问题解决能力。
教学重点:1. 掌握垂径定理的基本原理;2. 熟练应用垂径定理解决几何问题。
教学难点:1. 理解垂径定理的证明过程;2. 运用垂径定理解决复杂几何问题。
教学准备:1. 教学课件;2. 相关绘图工具;3. 示例题和练习题。
教学过程:一、导入(5分钟)1. 引入垂径定理的概念,与学生分享一个相关的现实生活或几何问题,激发学生的兴趣;2. 提出问题,让学生思考并尝试解决,引入垂径定理。
二、理论讲解(15分钟)1. 通过课件或黑板,讲解垂径定理的定义和基本原理;2. 结合示意图,解释垂径定理的证明过程;3. 鼓励学生提问和互动,确保学生理解垂径定理的内涵。
三、例题演练(20分钟)1. 给出一个简单的几何问题,引导学生运用垂径定理解决;2. 逐步展示解题过程,引导学生思考和讨论;3. 鼓励学生展示自己的解题思路,培养合作学习和表达能力。
四、拓展练习(25分钟)1. 提供一些具有一定难度的练习题,要求学生独立解答;2. 学生在解答过程中可以相互交流和讨论,学习不同的解题方法;3. 教师及时给予指导和解答,引导学生更好地掌握垂径定理的应用。
五、归纳总结(10分钟)1. 教师帮助学生总结垂径定理的关键点和应用方法;2. 学生通过讨论和归纳,进一步理解和掌握垂径定理的本质;3. 教师给予肯定和激励,鼓励学生继续努力提高几何问题解决能力。
六、作业布置(5分钟)1. 布置一些相关的作业题目,要求学生独立完成;2. 鼓励学生自主思考和探索,加深对垂径定理的理解;3. 提醒学生按时提交作业,及时纠正错误。
教学反思:本节课通过引入实际问题、理论讲解、例题演练和拓展练习等环节,旨在帮助学生理解和应用垂径定理。
教学内容紧密结合实例,注重培养学生的思维逻辑能力和问题解决能力。
D
A
学生答:ADOE 为矩形
那么,如何来证明呢 ?
学生口答:∵OD ⊥AB ,OE ⊥AC ,AC ⊥AB ∴∠EAD=∠ADO=∠AEO=90°
∴ADOE 为矩形。
师:如果已知AC=AB ,又会有什么结论呢? 学生答:ADOE 为正方形 那么,如何来证明呢 ?
学生口答:在刚才的证明中加上 ∵AC=AB ∴AE=AD
∴ADOE 为正方形。
例2 1300 多年前,我国隋代建造的赵州石拱桥的桥拱是
圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)
解:AB 表示桥拱,AB 的圆心为O ,半径为R 米。
经过圆心O 作弦AB 的垂线OD ,D 为垂足,与AB 相交于点C ,根据垂径定理,D 是AB 的中点,C 是AB 的中点,CD 就是拱高。
由题设
AB=37.4,CD=7.2 AD=
21AB=2
1
*37.4=18.7 OD=OC-DC=R-7.2
在Rt △OAD 中,由勾股定理,得
OA 2=AD 2+OD 2
即 R 2=18.72+(R-7.2)2
解这个方程,得27.9(米)
答:赵州石拱桥的桥拱半径为 27.9米。
练习:在直径为650mm 的圆形油槽内装入一些油后,截面如图所示。
若油面宽AB=600mm ,求油的最大深度。
学生板演:得200mm 。
这节课我们就讲到这里,下面请一位同学总结我们这节课学习了哪些内容? 1、 圆是轴对称图形 2、 垂径定理
通过实际问题的结决,使学生会用所学的知识解决日常生活中的有关问题,从而使数学真正的为我们所用。
通过小结,使学生掌握本节的知识点,把所学的知识纳入已有的知识体系。
通过预习作业,使学生养成良好的学习习惯。