随机信号第四章习题
- 格式:doc
- 大小:259.00 KB
- 文档页数:10
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
第一章 随机过程基础本章要点概率论、随机变量、极限定理等等是随机信号分析与处理应用的理论基础。
本章主要内容:概率,随机变量及其概率分布,随机变量函数的分布,随机变量的数字特征,特征函数等概念。
基本内容一、概率论 1、古典概型用A 表示所观察的随机现象(事件),在A 中含有的样本点(基本事件)数为A n ,则定义事件A 出现的概率()P A 为 ()An P A n=(1-1)2、几何概型用A 表示所观察的随机现象(事件),它的度量大小为()L A ,则规定事件A 出现的概率()P A 为 ()()()E L A P A L S =(1-2)3、统计概率对n 次重复随机试验C E ,事件A 在这n 次试验中出现的次数()n f A 称为频数。
用事件A 发生的频数()n f A 与试验次数n 的比值()n F A 称为频率()()()n n f A P A F A n≈=(1-3)4、概率空间对随机试验E ,试验的各种可能结果(称基本事件、样本点)构成样本空间E S (也称基本事件空间),在样本空间中的一个样本点或若干个样本点之适当集合称为事件域A (A 中的每一个集合称为事件)。
若事件A ∈A ,则()P A 就是事件A 的概率。
并称{},,E S P A 为一个概率空间,而样本空间E S ,事件域A,概率P 是构成概率空间的三个要素。
二、随机变量1、随机变量的概念 设已知一个概率空间(),,E S P A ,对E s S ∈,()X s 是一个取实数值的单值函数,则对任意实数1x ,()1X s x ≤是一个随机事件,且(){}1:s X s x ≤∈A,则称()X s 为随机变量。
显然,随机变量()X s 总是联系着一个概率空间,这将使对随机事件的研究转化为对随机变量的研究。
为了方便,此后若无特别需要将随机变量()X s 简记为X 。
2、随机变量的概率密度函数定义随机变量X 的累积概率分布函数为()()F x P X x =≤而把它的导数定义为随机变量X 的概率密度函数。
4-4设有限时间积分器的单位冲激响应h(t)=U(t)-U(t -0.5) 它的输入是功率谱密度为 210V Hz 的白噪声,试求系统输出的总平均功率、交流平均功率和输入输出互相关函数()()()()()22221:()2[()][()]0Y Y Y Y XY X P E Y t G d D Y t E Y t m E Y R R R h ωωπτττ∞-∞⎡⎤==⎣⎦⎡⎤=-==⎣⎦=*⎰思路()()()10()()10()10[()(0.5)]()()10[()(0.5)]XY X YX XY R R h h h U U R R U U τττδτττττττττ=*=*==--=-=----解:输入输出互相关函数()Y R τ00020.025()0()10()10()0()()()()10(()00[()(0.)()10()()()10()()10101100.55[()5)]](0)X X X Y X Y X Y Y X t m G R m m h d R U R h h h h h h d R h h d d d E Y t R U ωτττττττττλτλδτλλλλλλλμ∞∞∞∞==⇔====**-=*-=+=+=-=-=⋅=⨯==⎰⎰⎰⎰⎰时域法平均功是白噪声,,,率面积法:225[()][()]5Y Y D Y t E Y t m ==-=P 交流:平均功率()()()2141224222Y2(P1313711()2415()()()102424115112522242j j j Y X Y U t U t Sa e H e Sa G G H e Sa Sa G d Sa S d a d ωτωωωτττωωωωωωωωωωωππωωπ---∞∞∞-∞∞--∞⎛⎫--⎡⎤ ⎪⎣⎦⎝⎭-⎛⎫⇒= ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫===⎛⎫= ⎪ ⎭⎪⎭⎝⎝⎰⎰⎰P 矩形脉冲A 的频谱等于A 信号与线性系统书式域法)频()()2220000[()][()][()]5Y X Y Y m m H H D Y t E Y t m E Y t =⋅=⋅⇒=-===P 交直流分量为平均功率:流4-5 已知系统的单位冲激响应()(1)[()(1)]h t t U t U t =---,其输入平稳信号的自相关函数为()2()9X R τδτ=+,求系统输出的直流功率和输出信号的自相关函数?分析:直流功率=直流分量的平方解: 输入平稳输出的直流分量 输出的直流功率()2300X X m R σ==±==()()()10332Y X m m h t h t ττ=*=*=⎰=31-d ()()()()()()()()()()()()()()()2'''222'[()(1()(1)(1)F )]12122222j j j j Y h t t t d F j d d F j jd H A A U t U t A Sa ej A Sa e Sa e Sa eG U t U t t j ωωωωωωωωωωωωωωωωωω----⋅↔⇒⋅↔-⇒=-⎛⎫--⇒=⎡⎤ ⎪⎣⎦⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⇒==+⋅-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝=-=-⎭⎣-=-⎦变换 频域的微分特性 -jt f t t f t =A t A t 矩形脉冲A 谱t 的频()()()()()()()()()()()2''21920222410001lim 022239024X X Y Y X G H G H H Sa Sa R j H A A j Sa m m H j ωωωωωωωωπδτω*→=⋅⋅⎡⎤⎛⎫⎛⎫=-+⇒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭=⋅=⇒==直流功率294Y m =()Y X m m h t =*4-7 已知如图4.21 所示的线性系统,系统输入信号是物理谱密度为0N 的白噪声,求:①系统的传递函数()H ω?②输出()Z t 的均方值?其中2222[sin()][()]2ax dx a ax dx axSa π∞∞==⎰⎰()()()()()()()112122121212()()()()()()()()()()()F ()(1)()()11()()()()()()()(()j T Y t X t X t T h t t t T t h t d U t Y X H Y H X H H H H H H e H j H h H t h t H ωωωωωωωωωωωωωωωπδωωωωδδωλδλω-∞-∆∆=--=--⇒=⋅==⇒⇒=-=+=⋅=⋅⋅=⎡⎤⎣⎦⎰Z Z 可以分别求冲激响应,输入为冲激函数:输入为冲激函数、,冲激响应=1(1)()1)[()](1)()j Tj T j T e e e j j ωωωπδωπδωωω----=-+=-+()2222222220022022102(2)(1)(1)2()(1cos )2sin sin 2sin ((0)()()()21sin 21sin (0)2)()()()[()]j T j T Z X j Z Z Z Z Z Z e e H T j j T TN T G G H H N T N e d T R G R R F G R N ωωωτωωωωωωωωωωωωωωωωωπωωπωωττω+∞-∞----=⋅=-⋅=⇒⋅=⋅⋅=⋅-⋅⇒⋅==⋅⎰===求输出Z t 的均方值即,所以有2200000sin 2222j e d N TN N T d T τωωπωπωπ∞-∞∞=⋅⋅=⋅⋅=⎰⎰4-11 已知系统的输入为单位谱密度的白噪声,输出的功率谱密度为2424()109Y G ωωωω+=++求此稳定系统的单位冲激响应()h t ?解:()()()()()()()()()()()()()()()()()()()()()()242223211242()41092243311()()12231311112()0231921Y t Y X X t G s s s s s s G H G H s H s H s s j H s H s s j j h t F H F e e U t j j s s j s H G s ωωωωωωωωωωωωωωωωω----⋅==⇒=-=++=⇒=++++⎛⎫ ⎪+=++-+-+====+ ⎪++ ⎪⎝⎭-+-+-+==系统稳定,则零头、极点都+在左半平面带入4-12 已知系统输入信号的功率谱密度为223()8X G ωωω+=+ 设计一稳定的线性系统()H ω,使得系统的输出为单位谱密度的白噪声?解:()()()()()221()11()Y X X G G H s s H s G s H s H ωωωω=⇒⋅=⇒==⇒==即4-14 功率谱密度为02N 的白噪声作用于(0)2H =的低通网络上,等效噪声带宽为XH MHz 。
随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。
2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。
3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。
(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。
5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。
(2)X 与Y 统计独立时所有A 值。
6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。
7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。
由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。
给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω ③求()X t 和()Y t 的互谱密度()XY G ω ④求()X t 和()Z t 的互相关函数()XZ R τ ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
4-1习 题4.1 随机信号()1Y t 与()2Y t 的实测样本函数如下题图4.1(a)与(b)所示,试说明它们是否均值各态历经。
(a ) (b )题图4.1解:由均值各态历经信号的物理意义:只要观测的时间足够长,每个样本函数都将经历信号的各个状态,结合题图可见:(a )不可能是均值各态历经信号;(b )很可能是均值各态历经信号4.2 随机二元传输信号如例3.16所述,试分析它的均值各态历经性。
解:由例3.16,随机二元传输信号的协方差函数为, 41(),0Y pq T C T Tττττ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭>⎪⎩又根据充分条件为:()lim 0C ττ→∞=,且 ()04C pq =<∞,因此,它是均值各态历经信号。
4.34.4 随机信号()X t 与()Y t 是联合广义各态历经的,试分析信号()()()Z t aX t bY t =+的各态历经性,其中a 与b 是常数。
解:由题意,均方意义下有,[()][()][()]()()()A Z t aA X t bA Y t aEX t bEY t EZ t =+=+=2222[()()][()()][()()][()()][()()][()()][()()][()()][()()]()Z A Z t Z t a A X t X t b A Y t Y t abA X t Y t abA Y t X t a E X t X t b E Y t Y t abE X t Y t abE Y t X t R ττττττττττ+=+++++++=+++++++=因此,()Z t 是均值各态历经信号4.54.6 随机过程()sin cos X t A t B t =+,式中,A 和B 为零均值随机变量。
求证()X t 是均值各态历经的,而均方值无各态历经性。
4-2 解:由题意,首先,()sin cos 0[()][sin ][cos ]0EX t EA t EB t A X t A A t B A t =+==⨯+⨯= 而222222222()sin cos 2sin cos sin cos sin 2X t A t B t AB t t A t B t AB t =++=++ 222222222[()]sin cos sin 2sin cos E X t EA t EB t EA EB t EA t EB t =++⨯⨯=+2222222[()][sin ][cos ][sin 2]2A B A X t A A t B A t AB A t +=⨯+⨯+⨯= 显然,()[()]EX t A X t =,但22()[()]EX t A X t ≠。
4-4设有限时间积分器的单位冲激响应h(t)=U(t)-U(t -0.5) 它的输入是功率谱密度为 210V Hz 的白噪声,试求系统输出的总平均功率、交流平均功率和输入输出互相关函数()()()()()22221:()2[()][()]0Y Y Y Y XY X P E Y t G d D Y t E Y t m E Y R R R h ωωπτττ∞-∞⎡⎤==⎣⎦⎡⎤=-==⎣⎦=*⎰思路()()()10()()10()10[()(0.5)]()()10[()(0.5)]XY X YX XY R R h h h U U R R U U τττδτττττττττ=*=*==--=-=----解:输入输出互相关函数()Y R τ00020.025()0()10()10()0()()()()10(()00[()(0.)()10()()()10()()10101100.55[()5)]](0)X X X Y X Y X Y Y X t m G R m m h d R U R h h h h h h d R h h d d d E Y t R U ωτττττττττλτλδτλλλλλλλμ∞∞∞∞==⇔====**-=*-=+=+=-=-=⋅=⨯==⎰⎰⎰⎰⎰时域法平均功是白噪声,,,率面积法:225[()][()]5Y Y D Y t E Y t m ==-=P 交流:平均功率()()()2141224222Y2(P1313711()2415()()()102424115112522242j j j Y X Y U t U t Sa e H e Sa G G H e Sa Sa G d Sa S d a d ωτωωωτττωωωωωωωωωωωππωωπ---∞∞∞-∞∞--∞⎛⎫--⎡⎤ ⎪⎣⎦⎝⎭-⎛⎫⇒= ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫===⎛⎫= ⎪ ⎭⎪⎭⎝⎝⎰⎰⎰P 矩形脉冲A 的频谱等于A 信号与线性系统书式域法)频()()2220000[()][()][()]5Y X Y Y m m H H D Y t E Y t m E Y t =⋅=⋅⇒=-===P 交直流分量为平均功率:流4-5 已知系统的单位冲激响应()(1)[()(1)]h t t U t U t =---,其输入平稳信号的自相关函数为()2()9X R τδτ=+,求系统输出的直流功率和输出信号的自相关函数?分析:直流功率=直流分量的平方解: 输入平稳输出的直流分量 输出的直流功率()2300X X m R σ==±==()()()10332Y X m m h t h t ττ=*=*=⎰=31-d ()()()()()()()()()()()()()()()2'''222'[()(1()(1)(1)F )]12122222j j j j Y h t t t d F j d d F j jd H A A U t U t A Sa ej A Sa e Sa e Sa eG U t U t t j ωωωωωωωωωωωωωωωωωω----⋅↔⇒⋅↔-⇒=-⎛⎫--⇒=⎡⎤ ⎪⎣⎦⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⇒==+⋅-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝=-=-⎭⎣-=-⎦变换 频域的微分特性 -jt f t t f t =A t A t 矩形脉冲A 谱t 的频()()()()()()()()()()()2''21920222410001lim 022239024X X Y Y X G H G H H Sa Sa R j H A A j Sa m m H j ωωωωωωωωπδτω*→=⋅⋅⎡⎤⎛⎫⎛⎫=-+⇒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭=⋅=⇒==直流功率294Y m =()Y X m m h t =*4-7 已知如图4.21 所示的线性系统,系统输入信号是物理谱密度为0N 的白噪声,求:①系统的传递函数()H ω?②输出()Z t 的均方值?其中2222[sin()][()]2ax dx a ax dx axSa π∞∞==⎰⎰()()()()()()()112122121212()()()()()()()()()()()F ()(1)()()11()()()()()()()(()j T Y t X t X t T h t t t T t h t d U t Y X H Y H X H H H H H H e H j H h H t h t H ωωωωωωωωωωωωωωωπδωωωωδδωλδλω-∞-∆∆=--=--⇒=⋅==⇒⇒=-=+=⋅=⋅⋅=⎡⎤⎣⎦⎰Z Z 可以分别求冲激响应,输入为冲激函数:输入为冲激函数、,冲激响应=1(1)()1)[()](1)()j Tj T j T e e e j j ωωωπδωπδωωω----=-+=-+()2222222220022022102(2)(1)(1)2()(1cos )2sin sin 2sin ((0)()()()21sin 21sin (0)2)()()()[()]j T j T Z X j Z Z Z Z Z Z e e H T j j T TN T G G H H N T N e d T R G R R F G R N ωωωτωωωωωωωωωωωωωωωωωπωωπωωττω+∞-∞----=⋅=-⋅=⇒⋅=⋅⋅=⋅-⋅⇒⋅==⋅⎰===求输出Z t 的均方值即,所以有2200000sin 2222j e d N TN N T d T τωωπωπωπ∞-∞∞=⋅⋅=⋅⋅=⎰⎰4-11 已知系统的输入为单位谱密度的白噪声,输出的功率谱密度为2424()109Y G ωωωω+=++求此稳定系统的单位冲激响应()h t ?解:()()()()()()()()()()()()()()()()()()()()()()242223211242()41092243311()()12231311112()0231921Y t Y X X t G s s s s s s G H G H s H s H s s j H s H s s j j h t F H F e e U t j j s s j s H G s ωωωωωωωωωωωωωωωωω----⋅==⇒=-=++=⇒=++++⎛⎫ ⎪+=++-+-+====+ ⎪++ ⎪⎝⎭-+-+-+==系统稳定,则零头、极点都+在左半平面带入4-12 已知系统输入信号的功率谱密度为223()8X G ωωω+=+ 设计一稳定的线性系统()H ω,使得系统的输出为单位谱密度的白噪声?解:()()()()()221()11()Y X X G G H s s H s G s H s H ωωωω=⇒⋅=⇒==⇒==即4-14 功率谱密度为02N 的白噪声作用于(0)2H =的低通网络上,等效噪声带宽为XH MHz 。
若在1Ω电阻上的输出平均功率为0.1W 。
求0N 的值? 书P162Z H 2ee f ωπ∆=单位为,622XH 10e e f ωππ∆⋅⋅故本题==或者调用公式 62Y 00m 70axXH 1210X 410241()2H 0.1e N H N N ωωπππ-⨯⋅⇒==∆⋅⋅=⨯⋅⇒P 222maxm 0ax()(()2)Y e N H d H H πωωωωω∞∆==⋅⎰P图4.24 习题4-184-18 如图4.24所示的线性系统,系统输入()W t 是零均值,物理谱密度为1的白噪声,且()()th t e U t -=。
①判断()X t 和()Y t 分别服从什么分布?给出理由。
②证明()Y t 是严平稳过程。
③求()W t 和()X t 的互相关函数,()Y t 的功率谱密度? ④写出()Y t 的一维概率密度表达式?⑤判断同一时刻,()X t 和()Y t 是否独立?给出理由。
解:①()W t 是白噪声 (白噪声带宽无限,由定义), 线性系统()()t h t e U t -=,系统传递函数1()1H j ωω=+,是个低通线性系统(带宽有限)由4.5节结论2若系统输入信号的等效噪声带宽远大于系统的带宽,则输出接近于高斯分布可知,()X t 为高斯过程。
由4.5节结论1可知,()Y t 为高斯过程。
⇒()X t 和()Y t 服从高斯分布②证明()Y t 是严平稳过程证:()W t 是白噪声(宽平稳过程),通过线性系统的输出()Y t 也是宽平稳过程(4.2.2结论1)。
对于高斯过程,宽平稳和严平稳等价。
③求()W t 和()X t 的互相关函数,()Y t 的功率谱密度11()()()(()())22W t X W e R R t U h U e ττττδττ--=*=*=()()1()1t H h t e U j t ωω-⇔+==221()()()2(1)X W G H G ωωωω=⋅=+ 1()exp()4X R ττ⇒=-傅立叶反变换 [][][]{}()()()()()()()2()()()12exp()exp()exp()4Y X X X R E Y t Y t E X t X t T X t X t T R R T R T T T ττττττττττ=+=--+-+-=---+=⎡------+⎤⎣⎦()()2222221422()411114211cos 4111j T j T Y j T j T G e e e e T ωωωωωωωωωωωω--⎡⎤=--⎢⎥+++⎣⎦⎡⎤=-+=-⎢⎥+++⎣⎦可得习题3-7 的结论()()2()1cos Y X G G T ωωω=-④求()Y t 一维概率密度表达式()[]21(0)1exp()2Y Y t R T σ⎧⎪⎪⎨⎪⎪==--⎩是高斯过程输入零均值,输出零均值,则易得 ()222;y Y f y t σ-=思考1:上述随机过程的一维概率密度表达式中没有时间参量t ,根据()Y t 严平稳过程的特性也可以推到。
思考2:试着写出这个过程一维、二维的概率密度和特征函数形式。
⑤判断同一时刻,()X t 和()Y t 是否独立?给出理由()X t 和()Y t 独立(高斯过程)等价 互不相关(零均值) 等价 正交()X t 和()Y t 联合平稳,再由两者的相互关系可得[][]()()()()()()1(0)()1exp()4()()()(0)0XY X X X XY X E X t Y t E X t X t X t X t T R R T R R T T R R ττττττ=+=+-+-=⇒=--=⎡---⎤⎣⎦-≠即不正交()X t ⇒和()Y t 在同一时刻不独立。