桂电《随机信号分析基础》 总复习提纲_18214
- 格式:pdf
- 大小:98.82 KB
- 文档页数:5
简答题1.简述两个随机变量X 和Y 之间分别满足独立、不相关、正交关系的条件,以及这三种关系之间的联系。
答:独立:)()(),(y F x F y x F Y X XY ⋅=,或)()(),(y f x f y x f Y X XY ⋅=; 不相关:0=XY r 或0),cov(=Y X ; 正交:0][=XY E .若X 和Y 独立则一定不相关,若X 和Y 不相关则不一定独立; 若X 或Y 的数学期望为0,则不相关与正交等价。
2. 写出函数),(t e X 在①e 确定t 为变量、②t 确定e 为变量、③e 和t 都确定、④e 和t 都是变量四种情况下所代表的意义。
其中S e ∈,S 为样本空间,t 为时间参数。
答:①样本函数;②随机变量;③常数;④随机过程。
3.简述宽平稳随机过程与遍历性过程的关系。
答:平稳过程同时满足以下条件才为遍历性过程 ①均值具有遍历性②相关函数具有遍历性。
所以遍历过程一定是平稳过程,平稳过程不一定是遍历过程。
4.白噪声的功率谱密度和自相关函数各有何特点?一般白噪声在任意两个不同时刻有何种关系?正态白噪声在任意两个不同时刻有何种关系?答:白噪声的功率谱密度是常数,自相关函数是一个在0处的冲激函数。
一般白噪声在任意两个不同时刻不相关,正态白噪声在任意两个不同时刻独立。
5.若随机过程)(t X 是平稳过程,则其功率谱密度)(ωX G 与自相关函数)(τX R 有何关系?请写出关系式。
答:)(ωX G 是)(τX R 的傅立叶变换,ττωωτd e R G j X X -∞∞-⎰=)()(,或ωωπτωτd e G R j X X ⎰∞∞-=)(21)(.6.设线性系统的冲激响应为h(t),输入随机过程为X(t),系统输出为Y(t),各自的自相关函数分别为RX(t1,t2)和RY(t1,t2)。
说明二者之间的关系。
答:)()(),(),(212121t h t h t t R t t R X Y **=.7.写出希尔伯特变换的时域形式)(t h 和频域形式)(ωH 。
第 一 章1.1不考 条件部分不考△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22T Tx m X XXX X n n XT T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E ejM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C u u r u u ru u r u u r u u r u u r L u r u ru u r u r L另外一些性质: []()20XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。
(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。
(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。
概率论基础1.概率空间、概率(条件概率、全概率公式、贝叶斯公式)2.随机变量的定义(一维、二维实随机变量)3.随机变量的描述:⑴统计特性一维、二维概率密度函数、一维二维概率分布函数、边缘分布概率分布函数、概率密度函数的关系⑵数字特征一维数字特征:期望、方差、均方值(定义、物理含义、期望和方差的性质、三者之间的关系)二维数字特征:相关值、协方差、相关系数(定义、相互关系)⑶互不相关、统计独立、正交的定义及其相互关系△雅柯比变换(随机变量函数的变换一维随机变量函数的单值和双值变换、二维随机变量函数的单值变换)5、高斯随机变量一维和二维概率密度函数表达式高斯随机变量的性质△随机变量的特征函数及基本性质、随机信号的时域分析1、随机信号的定义从三个方面来理解①随机过程X(t,ζ)是t,ζ两个变量的函数②X(t,ζ)是随时间t变化的随机变量③X(t,ζ)可看成无穷多维随机矢量在∆t→0,n→∞的推广2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机信号的统计特性分析:概率密度函数和概率分布函数(一维、二维要求掌握)4、随机信号的数字特征分析(定义、物理含义、相互关系)一维:期望函数、方差函数、均方值函数。
(相互关系)二维:自相关函数、自协方差函数、互相关函数、互协方差函数(相互关系)5、严平稳、宽平稳定义、二者关系、判断宽平稳的条件、平稳的意义、联合平稳定义及判定6、平稳随机信号自相关函数的性质:0点值,偶函数,均值,相关值,方差7、两个随机信号之间的“正交”、“不相关”、“独立”。
(定义、相互关系)8、高斯随机信号定义(掌握一维和二维)、高斯随机信号的性质9、各态历经性定义、意义、判定条件(时间平均算子、统计平均算子)、平稳性与各态历经性的关系直流分量、直流平均功率、总平均功率、交流平均功率随机信号的频域分析1、随机信号是功率信号,不存在傅里叶变换,在频域只研究其功率谱。
《随机信号基础》知识点1、确定函数、随机变量、随机过程三者之间的关系例题:理解最简单随机过程()()Θ+⋅=t a t X ωcos ,其中ω,a 是常数,t 表示时间,Θ表示随机相位。
(1)当t ,Θ均为变量时,()t X 是一族时间t 的函数,即为随机过程; (2)当Θ给定,t 为变量时,()t X 是一个确定的时间t 的函数,即样本函数; (3)当t 给定,Θ为变量时,()t X 表示一个随机变量,即t 时刻的状态; (4)当Θ,t 均给定时,()t X 是一个常量。
总结:随机过程=时间+随机变量,注意扩展,简述题考查多。
2、随机变量的分布函数与概率密度函数 分布函数:()()x X P x F ≤= 概率密度函数:()()dxx dF x f =例题:设某信号源,每T 秒产生一个幅度为A 的方波脉冲,其脉冲宽度X 为均匀分布于[]T ,0中的随机变量。
这样构成一个随机过程()∞<≤t t Y 0,。
设不同间隔中的脉冲是统计独立的,求()t Y 的概率密度()y f Y 。
解:某个时刻()t Y 可以看做随机变量,取范围()nT t T n <≤-1;()t Y 取值只有两种:(){}()[]{}()T Tn t T n t X P t Y P 110--=--≤== (){}()[]{}TtnT T n t X P A t Y P -=-->==1()()()()A y T tnT y T T n t y f Y --+--=δδ1注意:对于离散随机变量的分布函数可表示为:()()∑-=ii i x x U p x F ;概率密度函数可表示为:()()∑-=ii i x x p x f δ。
例题:利用重复掷硬币的试验定义一个随机过程:()⎩⎨⎧=出现反面出现正面,2,cos tt t X π 设“出现正面”和“出现反面”的概率各为0.5;(1)求X(t)的一维分布函数()1,,21,x F x F X X ⎪⎭⎫⎝⎛(2)求X(t)的二维分布函数⎪⎭⎫ ⎝⎛1,21;,21x x F X解:令随机变量Y 表示试验结果,Y=1表示正面,Y=0表示反面。