锐角三角函数
- 格式:doc
- 大小:685.00 KB
- 文档页数:12
初中锐角三角函数公式表公式有如下几个:sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2];cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2];cosαcosβ=[cos(α+β)+cos(α-β)]/2;sinαcosβ=[sin(α+β)+sin(α-β)]/2;cosαsinβ=[sin(α+β)-sin(α-β)]/2 。
锐角三角函数是以锐角为自变量,以比值为函数值的函数。
如图:我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。
锐角三角函数值都是正值正弦。
(sin)等于对边比斜边;余弦(cos)等于邻边比斜边;正切(tan)等于对边比邻边;余切(cot)等于邻边比对边;正割(sec)等于斜边比邻边;余割(cs c)等于斜边比对边。
扩展资料1、同角三角函数间的关系·平方关系:sin^2(A)+cos^2(A)=1·积的关系:sinA=tanA·cosAcosA=cotA·sinAcotA=cosA·cscAtanA·cotA=1·倒数关系:直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边,余切等于邻边比对边3、三角函数值(1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤∠A≤90°间变化时,0≤sinα≤1, 1≥cosA≥0,当角度在0°<∠A<90°间变化时,tanA>0, cotA>0.特殊的三角函数值0°30°45°60°90°0 1/2 √2/2 √3/2 1 ←sinA1 √3/2 √2/2 1/2 0 ←cosA0 √3/3 1 √3 None ←tanANone √3 1 √3/3 0 ←cotA。
锐角三角函数锐角三角函数指的是在单位圆上,与单位圆心的射线所夹角度小于90°的三角函数。
常见的锐角三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)以及它们的倒数函数(csc、sec、cot)。
锐角三角函数在数学、物理、工程等领域具有重要的应用。
正弦函数 (sin)正弦函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标。
可以用以下公式表示:sin(θ) = 对边 / 斜边正弦函数图示正弦函数图示在三角函数中,正弦函数具有以下特点: - 值域在[-1,1]之间; - 奇函数,即sin(-θ) = -sin(θ); - 周期为2π,即sin(θ + 2π) = sin(θ)。
余弦函数 (cos)余弦函数是指在单位圆上,与x轴正方向的夹角所对应的横坐标。
可以用以下公式表示:cos(θ) = 邻边 / 斜边余弦函数图示余弦函数图示在三角函数中,余弦函数具有以下特点: - 值域在[-1,1]之间; - 偶函数,即cos(-θ) = cos(θ); - 周期为2π,即cos(θ + 2π) = cos(θ)。
正切函数 (tan)正切函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标与横坐标的比值。
可以用以下公式表示:tan(θ) = 对边 / 邻边正切函数图示正切函数图示在三角函数中,正切函数具有以下特点: - 值域为全体实数; - 周期为π,即tan(θ + π) = tan(θ)。
倒数函数 (csc、sec、cot)在锐角三角函数中,除了正弦函数、余弦函数和正切函数,倒数函数也是常见的。
倒数函数分别为余弦函数的倒数 (csc)、正弦函数的倒数 (sec) 以及正切函数的倒数 (cot)。
倒数函数的定义如下:csc(θ) = 1 / sin(θ)sec(θ) = 1 / cos(θ)cot(θ) = 1 / tan(θ)这些倒数函数在数学中常用于简化关系式、求解方程等。
应用领域锐角三角函数在数学、物理、工程等领域有广泛的应用。
锐角三角函数知识要点一、锐角三角函数1. 正弦及其公式如图,在Rt △ABC 中,∠C=90°,如果锐角A 确定,那么∠A 的对边与斜边的比也随之确定,这个比叫做∠A 的正弦.记作sinA ,即ca斜边的对边∠A sinA ==.2. 余弦及其公式如图,在Rt △ABC 中,∠C=90°,如果锐角A 确定,那么∠A 的邻边与斜边的比也随之确定,这个比叫做∠A 的余弦.记作cosA ,即cb斜边的邻边∠A cosA ==.3. 正切及其公式如图,在Rt △ABC 中,∠C=90°,如果锐角A 确定,那么∠A 的对边与邻边的比也随之确定,这个比叫做∠A 的正切.记作tanA ,即ba∠A的斜边∠A的对边tanA ==.4. 锐角三角函数的定义锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.对于一个锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 也是∠的函数,其中∠A 是自变量,其取值范围是0°<∠A <90°,sinA 、cosA 、tanA 分别是对应的函数.由于在直角三角形中,斜边大于直角边,且各边长均为正数,所以:0<sinA <1,0<cosA <1,tanA >0.二、特殊三角函数锐角α 三角函数30°45°60°sinA2122 23 cosA23 22 21 tanA33 13例题精讲第一部分:正弦函数【例1】 (2011桂林)如图,已知Rt △ABC 中,∠C=90°,BC=3,AC=4,则sinA 的值为( )A .43 B .34 C .53 D .54【例2】(2012滨州)把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值( )A .不变B .缩小为原来的31C .扩大为原来的3倍D .不能确定【例3】 (2007宿迁)如图,△ABC 的顶点都是正方形网格中的格点,则sin ∠ABC 等于( )A .5B .552 C .55 D .32【例4】 (2009广州)已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ,如图所示,则sinθ的值为( ) A .125 B .135 C .1310 D .1312【例5】 如图所示,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,D 为垂足,若AC=4,BC=3,则sin ∠ACD 的值为 .【例6】 把含30°角的三角板ABC ,绕点B 逆时针旋转90°到三角板DBE 位置(如图所示),求sin ∠ADE 的值.第二部分:余弦函数【例7】 (2011来宾)在Rt △ABC 中,∠C=90°,AB=5,BC=3,则∠A 的余弦值为( )A .53 B .43 C .54 D .34【例8】 (2006湖北)如图,直角三角板的直角顶点0在直线AB 上,斜边CD ∥AB ,则cosα= .第三部分:正切函数【例9】 (2011苏州)如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC等于( ) A .43 B .34 C .53 D .54【例10】 (2011黔东南州)如图,在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的中线,若BC=6,AC=8,则tan ∠ACD 的值为( )A .53 B .54 C .34 D .43【例11】 (2008泰安)直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B重合,折痕为DE ,则tan ∠CBE 的值是( ) A .724B .37C .247D .31 【例12】(2008桂林)如图,在Rt △ABC 中,∠C=90°,∠A=30°,E 为AB 上一点且AE :EB=4:1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( )A .33B .332C .335D . 35【例13】 (2005泰安)直角三角形纸片的两直角边AC 与BC 之比为3:4.(1)将△ABC 如图1那样折叠,使点C 落在AB 上,折痕为BD ;(2)将△ABD 如图2那样折叠,使点B 与点D 重合,折痕为EF . 则tan ∠DEA 的值为( )A .43 B .34 C .2519 D .54第四部分:特殊角的三角函数值【例14】 (2011烟台)如果△ABC 中,sinA=cosB=22,则下列最确切的结论是( ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形【例15】(2002杭州)在△ABC 中,∠A 和∠B 都是锐角,且sinA=21,cosB=22,则△ABC 三个内角的大小关系为( )A .∠C >∠A >∠B B .∠B >∠C >∠AC .∠A >∠B >∠CD .∠C >∠B >∠A【例16】(2010济南)如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为( )A .21B .22C .23 D .1【例17】(2009贺州)已知a=3,且(4tan 45°-b )2+0213=-+c b ,以a ,b ,c 为边组成的三角形面积等于( )A .6B .7C .8D .9【例18】(2007襄阳)计算:cos 245°+tan60°•cos30°等于( ) A .1 B .2 C .2D .3【例19】(2006潍坊)计算:tan60°+2sin45°-2cos30°的结果是( ) A .2 B .3 C .2 D . 1 【例20】 (2012南昌)计算:sin30°+cos30°•tan60°【例21】(2011深圳)计算:2-1+3cos30°+|-5|-(π-2011)0.【例22】 (2009芜湖)(-1)2009×(21-)-2+(-3π)0+|1-sin60°|【例23】(2011兰州)已知α是锐角,且sin (α+15°)=23,计算 8-4cosα-(π-3.14)0+tanα+(31)-1的值.解直角三角形知识要点一、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; (2)互为余角的两个三角函数关系: 若∠A+∠B=∠90,则sinA=cosB,cosA=sinB.二、解直角三角形的应用中的几个概念 1.仰角、俯角如图1所示,当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫仰角,在不平线下方的角叫做俯角.2.水平距离、垂直距离、坡面距离如图2所示,BC 代表水平距离,AC 代表垂直距离,AB 代表坡面距离.铅垂线仰角 俯角视线 水平线视线图 1ABC垂 直 距 离 坡面距离水平距离 图23.坡度、坡角如图3所示,把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母i 表示,即lhi =,坡度一般写成l h :的形式,如⎪⎭⎫ ⎝⎛==515:1i i 即. 坡面与水平的夹角α叫做坡角,坡角与坡度之间有如下关系:αtan ==lhi .坡度越大,则α角越大,坡面越陡.4.方向角指北或指南方向线与目标方向线所成的小于︒90的水平角,叫方向角,如图4,OA ,OB ,OC ,OD 的方向角分别表示北偏东︒60,北偏西︒30,西南方向,南偏东︒20.lhlh i =α图3东南西北 BA︒60︒45C D图4例题精讲第一部分:解直角三角形的实际应用【例1】 某人上坡走了60米,他升高了230米,这坡的坡度是( )A .︒30B .1:1C .︒45D .22 【例2】 小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了( )A .5200mB .500mC .3500mD .1000m 【例3】 在距电视塔S 米的地面测得塔顶的仰角是α,则塔高是( )A .αsin S B .αcos SC .αcot ⋅SD .αtan ⋅S 【例4】 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为______米(保留根号).【例5】 (2010年辽宁省丹东市)如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( ) A .(53332+)m B .(3532+)m C . 533m D .4m【例6】 如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,AB A E D C30°处受噪音影响的时间为( )A .12秒B .16秒C .20秒D .24秒【例7】 如图,瞭望台AB 高20m ,瞭望台底部B 测得对面塔顶C 的仰角为60°,从瞭望台顶A 测得C 的仰角为45°,已知瞭望台与塔CD 地势高低相同,求塔CD 的高.【例8】 如图所示,水坝的横断面是梯形ABCD ,迎水坡DA 的坡度为1:2.5,背水坡CB 的坡度为1:2,坝高DE为8米,坝顶宽DC 为6米. 求:(1)坝底的宽AB ;(2)1米长的堤坝所需的土石方(体积).【例9】 如图所示,从塔底同一水平线上的测量仪上,测得塔顶的仰角为︒45,向塔前进了10米(两次测量在塔的同侧),又测得塔顶的仰角为︒60,测量仪器的高为1.5米,求塔高(精确到0.1米).AEDCB【例10】某兴趣小组用高为1.2米的仪器测量建筑物CD 的高度.如示意图,由距CD 一定距离的A 处用仪器观察建筑物顶部D 的仰角为β,在A 和C 之间选一点B ,由B 处用仪器观察建筑物顶部D 的仰角为α.测得A ,B 之间的距离为4米,tan 1.6α=,tan 1.2β=,试求建筑物CD 的高度.【例11】如图所示,在东西方向的海岸线上,有A 、B 两个码头,相距()13100-米,由码头A 测得一只船K在北偏东︒60,由码头B 测得K 在北偏西︒15.求船只K 到海岸线AB 的距离.【例12】如图所示,已知海岛P 的周围18千米的范围内有暗礁,一艘海轮在点A 处测得海岛P 在北偏东︒30方向,向正北航行12千米到达点B 处,又测得海岛P 在北偏东︒45的方向,如果海轮不改变航向,继续向北航行,有没有触礁的危险?ABC GFDEA BM K北北东西ACDBE F β αG【例13】如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.【例14】如图所示,已知:在山脚C 处测得出顶A 的仰角是︒45,沿着斜角为︒30的斜坡前进300m 到达D ,在D 点测得山顶A 的仰角为︒60.求山高AB .【例15】如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)ABC P东北AB DC第二部分:解直角三角形几何综合题【例16】在ABC ∆中,32sin 90=︒=∠A C ,,那么=B tan ( ) A .55 B .25 C .552 D .53【例17】菱形的边长为4,有一个内角为︒40,则较短的对角线长是( )A .︒40sin 4B .︒20sin 4C .︒20sin 8D .︒20cos 8 【例18】 已知在等腰ABC ∆中,顶角A 的平分线与对边交于D 点,若AB:BC=13:10,则=∠DAC cos . 【例19】 三角形三边的长分别为17,32,5,则此三角形最大内角的度数是 .【例20】一个三角形的一边长为2,这边上的中线长为1,另两边长之和为31+,则这个三角形的面积为( )A .1B .23 C .3 D .43【例21】方程()01242=++-m x m x ,的两根恰好是某直角三角形的两锐角的正弦,则m 的值为( )A .2B .3C .2±D .3±【例22】已知在ABC ∆中,B A C ∠>∠︒=∠,90,且A tan 和B tan 的值是方程013342=+-x x 的两个根,则=∠A . 【例23】如图,在梯形ABCD 中,AD ∥BC ,BD ⊥DC ,∠C =60°,AD =4,BC =6,求AB 的长.ABC D【例24】 一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°, ∠E=45°,∠A=60°,AC=10,试求CD 的长.课后练习1.菱形ABCD 的对角形AC=10cm ,BD=6cm ,那么2tanA等于( ) A .53 B .54C .343D .345 2.等腰三角形底边长10cm ,周长为36cm ,那么底角的余弦等于( ) A .135 B .1312 C .1310 D .125 3.在ABC Rt ∆中,31tan ,90=︒=∠A C ,则=B sin . 4.直角三角形中,一锐角的正切值为125,周长为18,则三边长为 . 5.如图所示,一树的上段CB 被风折断,树梢着地,与地面成︒30角,树梢着地处B 与树根A 相距6m ,则原来的树高是 .6.已知在ABC ∆中,3=AB ,AC=4,BC=3,BD 是AC 边上的中线,则BD 的长为 .A BC7.已知,如图,海岛A 四周20海里范围内是暗礁区.一艘货轮由东向西航行,在B 处测得岛A 在北偏西︒60,航行24海里后到C 处,测得岛A 在北偏西︒30.请通过计算说明,货轮继续向西航行,有无触礁危险?ABC 3060。
锐角三角函数在直角三角形ABC中,a、b、c分别是∠A、∠B、∠C的对边,∠C为直角。
则定义以下运算方式:sin A=∠A的对边长/斜边长,sin A记为∠A的正弦;sinA=a/c cos A=∠A的邻边长/斜边长,cos A记为∠A的余弦;cosA=b/c tan A=∠A的对边长/∠A的邻边长,tanA=sinA/cosA=a/ b tan A记为∠A的正切;当∠A为锐角时sin A、cos A、tan A统称为“锐角三角函数”。
sinA=cosB sinB=cosA常见三角函数在平面直角坐标系x O y中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)。
在这个直角三角形中,y是θ的对边,x是θ的邻边,r是斜边,则可定义以下六种运算方法:基本函数英文表达式语言描述正弦函数Sine sinθ=y/r 角θ的对边比斜边余弦函数Cosine cosθ=x/r 角θ的邻边比斜边正切函数Tangent tanθ=y/x 角θ的对边比邻边余切函数Cotangent cotθ=x/y 角θ的邻边比对边正割函数Secant secθ=r/x 角θ的斜边比邻边余割函数Cosecant cscθ=r/y 角θ的斜边比对边在初高中教学中,主要研究正弦、余弦、正切三种函数。
注:tan、cot曾被写作tg、ctg,现已不用这种写法。
sinπ/3非常见三角函数除了上述六个常见的函数,还有一些不常见的三角函数,这些运算已趋于淘汰:函数名与常见函数转化关系正矢函数versinθ=1-cosθ余矢函数coversθ=1-sinθ半正矢函数haversθ=(1-cosθ)/2;半余矢函数hacoversθ=(1-sinθ)/2;外正割函数exsecθ=secθ-1外余割函数excscθ=cscθ-1单位圆定义六个三角函数也可以依据半径为1中心为原点的单位圆来定义。
单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。
锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos³a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(√3/2)²] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 诱导公式 sin(-α) = -sinα cos(-α) = cosα tan (—a)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限 万能公式 sinα=2tan(α/2)/[1+tan^(α/2)] cosα=[1-tan^(α/2)]/1+tan^(α/2)] tanα=2tan(α/2)/[1-tan^(α/2)]。
锐角三角函数1.对于锐角α,总有 sin 2α+ cos 2α= 。
2、 Rt △ABC 中,∠C=90°,sinA=cosB3、tan α=cosAsinA 4、给出仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。
右图中的∠1就是仰角, ∠2就是俯角。
1. 互为余角的三角函数关系。
sinA=cos(90º-A) cosA=sin(90º-A)tanA=cot(90º-A) cotA=tan(90º-A)2. 锐角三角形函数随角度的变化规律:当角度在0º—90º间变化时,正弦、正切值随角度的增大(或减小)而增大(或减小),余弦、余切值随角度的增大(或减小)而减小(或增大).3. 同角三角函数的关系: sin ²α+cos ²α=1 tan α·cot α=1 tan α= cot α=4. 锐角α的三角函数的取值范围。
0<sin α<1 0<cos α<1 tan α>0 cot α>02、已知a 为锐角,sina=cos500则a 等于( ) A 20° B 30° C 40° D 50°3、已知tan α=125,α是锐角,则sin α= . 5.已知α为锐角,且sin α=0.7233,则cos (90°-α)=________.6, 若∠A=60°,则化简()21-sinA = 7,Rt △ABC 中,∠C=90°且3cos sin =+B A ,则∠A= 。
8,若Sin22°31′=CosA ,则∠A= 。
9 若Sin 2A+Cos 221°= 1,则∠A= 。
12.2222sin 1sin 2sin 88sin 89+++=… _______. 10.已知在Rt △ABC 中,∠C =90°,若sin A =552,则cos B 的值等于( ) A .51 B .55 C .53 D .1 11.当∠A 是锐角且tan A 的值大于33时,∠A 一定( ) sin α cos α cos α sin αA .小于30°B .大于30°C .小于60°D .大于60°12.下列各题中错误的是( )A .sin37°=cos53°B .sin60°=cos60°C .cos28°37′=sin61°23′D .cos α=sin (90-α)13比较大小:①tan21° tan31°, ②Sin21° Cos21°。
锐角三角函数知识点总结一、引言锐角三角函数是数学中的基础知识点,它在解决与直角三角形相关的问题中扮演着重要角色。
本文将总结锐角三角函数的基本概念、性质和公式,以及它们在实际问题中的应用。
二、基本概念1. 锐角:角度小于90度的角。
2. 直角三角形:一个角为90度的三角形。
3. 边的命名:- 对边(Opposite side):锐角所对的边。
- 邻边(Adjacent side):锐角旁边的边,但不包括斜边。
- 斜边(Hypotenuse):直角三角形中最长的边,对直角的两边进行闭合。
4. 锐角三角函数:- 正弦(Sine, sin):锐角的对边与斜边的比值。
- 余弦(Cosine, cos):锐角的邻边与斜边的比值。
- 正切(Tangent, tan):锐角的对边与邻边的比值。
三、基本公式1. 定义公式:- sin(θ) = 对边 / 斜边- cos(θ) = 邻边 / 斜边- tan(θ) = 对边 / 邻边2. 互余关系:- sin(90° - θ) = cos(θ)- cos(90° - θ) = sin(θ)- tan(90° - θ) = cot(θ)3. 基本恒等式:- sin²(θ) + cos²(θ) = 1- 1 + tan²(θ) = sec²(θ)- 1 + cot²(θ) = csc²(θ)4. 特殊角的三角函数值:- sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = √3/3 - sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1- sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √3四、应用1. 解直角三角形问题:- 利用三角函数求解边长。
锐角三角函数——正弦导学案主备人:张红亮 审核人:吴文志 编号: 班级: 小组: 姓名: 评价: 学习目标:1、掌握正弦的基本概念2、会利用正弦进行基本计算 学习过程:一、自主学习 预习课本,完成下列问题:1、∠A 的对边记作 ,∠B 的对边记作 ,∠C 的对边记作 ;2、在Rt △ABC 中,∠C=90°,我们把∠A 的 与 的比叫做∠A 的正弦,记作sinA ,即sin A A ∠==的对边( )斜边( )3、角的度数定下来了,他的正弦值定下了吗?请说明理由。
4、30°与45°的正弦值分别为多少? 二、典例讲解1、在平面直角平面坐标系中,已知点A(3,0)和B(0,-4),则sin ∠OAB 等于__ __2、如图在90ABC C ∆∠=︒中,AC=4,BC=3,求sin A 和sin B 的值.3、如图,在△ABC 中, AB=BC=5,sinA=45,求△ABC 的面积。
4、已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,12sin 13A = 求此菱形的周长.三、当堂测试1、在Rt △ABC 中,锐角A 的对边和斜边同时扩大100倍,sinA 的值( ) A.扩大100倍 B.缩小100倍 C.不变 D.不能确定2、如图,∠A=30度,则sin A =3、Rt △ABC 中,∠C=90°,AD 是BC 边上的中线,AC=2,BC=4,则sin ∠DAC=_____.4、如图90ABC C ∆∠=︒中,CB=5,AB=13,求sin A 和sin B 的值.5、如图,Rt △ABC 中,∠C=90度,CD ⊥AB ,图中sinB 可由哪两条线段比求得。
若AC=5,CD=3,求sinB的值6、在Rt △ABC 中,各边的长度都扩大10倍,那么锐角A 的正弦值 ( )A 、 扩大10倍B 、 缩小到原来的101C 、 没有变化D 、 不能确定 7、三角形在方格纸中的位置如图所示,则sin α的值是( )A 、43 B 、34 C 、53 D 、548、在Rt △ABC 中,∠C=90°,5sin 13A =,则sinB 等于 ( )A 、1312B 、1213C 、125D 、1359、在Rt △ABC 中,∠C=90°,AC=4,2sin 3B =,所以边AB 的长为 ( )A 、3B 、4C 、 5D 、6 10、在△ABC 中,AB=AC=5,BC=6,则sinB 的值是 。
11、已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,3sin 4AOC ∠=求:AB 及OC 的长.12、已知:如图,△ABC 中,AC =12cm ,AB =16cm ,1sin3A =(1)求AB 边上的高CD ; (2)求△ABC 的面积S ;13、已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .14、如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,OE ⊥CD 于点E ,且CD=24m ,已测得sin ∠DOE=1213. ⑴求半径OD 的长 ⑵根据需要,水面要以每小时0.5m 的速度下降,则经过多长时间才能将水排干。
6CB A锐角三角函数——余弦、正切导学案主备人:张红亮 审核人:吴文志 编号: 班级: 小组: 姓名: 评价: 学习目标⑴感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。
⑵逐步培养学生观察、比较、分析、概括的思维能力。
学习重点 理解余弦、正切的概念。
学习难点 熟练运用锐角三角函数的概念进行有关计算。
一、自主学习:1、我们是怎样定义直角三角形中一个锐角的正弦的?2、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( ) AB .23 CD3、如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= . 4、在Rt △ABC 中,∠C=90°,当锐角A 确定时,∠A 的对边与斜边的比是 ,现在我们要问:∠A 的邻边与斜边的比呢?∠A 的对边与邻边的比呢? 二、典例讲解:1:如图,在Rt △ABC 中,∠C=90°,BC=6,sinA=35,求cosA 、tanB 的值.2. 已知Rt △ABC 中,390,tan ,124C A BC ∠=︒==,求AC 、AB 和cos B . 3.如图P 为 ⊙O 外一点,PA 切⊙O 于点A ,且PO=5,PA=4,则sin ∠APO=( ) A .54 B .53 C .34 D .434、已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,1tan 3B ∠=, 求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .三、当堂测试1、在Rt ABC 中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有() ABCDAB∠A的邻边b∠A的对边a 斜边c CBA2、在Rt ABC 中,∠C =90°,如果cos A=45那么tan B 的值为()A .35B .54C .34D .433、如图:P 是∠a 的边OA 上一点,且P 点的坐标为(3,4), 则cos a =_____________. 4、在直角△ABC 中,∠C =90o ,若AB =5,AC =4,则tanA =( ) A .35 B .45 C .34 D .435、在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43D . 56、(1)已知锐角α的大小满足2tan 1)tan 0,ααα-==则(2)在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( )A B .23C D 7、在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( ) A .43; B .34; C .53; D .54 8、Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( ) A . sinA=135; B .cosA=1312; C . tanA=1213; D .1tan A =1259、4sin tan 5a a a =若为锐角,且,则 ( ) 933425543A B C D . . . .10、已知:如图,Rt △ABC 中,∠C =90°,AC BC =,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .11、已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,3sin 5AOC ∠=(1)求⊙O 的半径OA 的长及弦心距OC ;(2)求cos ∠AOC 及tan ∠AOC .锐角三角函数——特殊角三角函数值导学案主备人:张红亮 审核人:吴文志 编号: 班级: 小组: 姓名: 评价: 学习目标⑴能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。
⑵能熟练计算含有30°、45°、60°角的三角函数的运算式 学习重点 熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式 学习难点 30°、45°、60°角的三角函数值的推导过程 一、自主学习1、一个直角三角形中,一个锐角正弦是怎么定义的? 一个锐角余弦是怎么定义的? 一个锐角正切是怎么定义的?思考:两块三角尺中有几个不同的锐角? ,是多少度? 你能分别求出这几个锐角的正弦值、余弦值和正切值码? 2、填右表二、典例讲解例1:求下列各式的值. (1)cos 260°+sin 260°. (2)cos 45sin 45°°—tan45°.(3)22211cos 45cos 30sin 45sin 30tan 30︒-++︒+︒︒︒例2:(1)如图(1),在Rt △ABC 中,∠C=90,A 的度数. (2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OBa .三、当堂测试1、已知:Rt △ABC 中,∠C=90°,cosA=35,AB=15,则AC 的长是( ).A .3B .6C .9D .12 2、下列各式中不正确的是( ).A .sin 260°+cos 260°=1 B .sin30°+cos30°=1 C .sin35°=cos55° D .tan45°>sin45° 3、计算2sin30°-2cos60°+tan45°的结果是( ). A .2 BCD .14、已知∠A 为锐角,且cosA≤12,那么( )A .0°﹤A≤60°B .60°≤∠A<90°C .0°﹤∠A≤30°D .30°≤∠A ﹤90°5、在△ABC 中,∠A 、∠B 都是锐角,且sinA=12 ,cosB= 32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定 6、当锐角a>60°时,cosa 的值( ).A .小于12B .大于12C .大于 32D .大于17、在△ABC 中,三边之比为a :b :c=12,则sinA+tanA 等于8、若( 3 tanA-3)2+│2cosB - 3 │=0,则△ABC ( ). A .是直角三角形 B .是等边三角形 C .是含有60°的任意三角形 D .是顶角为钝角的等腰三角形 9、设α、β均为锐角,且sinα-cosβ=0,则α+β=_______. 10、已知,等腰△ABC •的腰长为4 3 ,底为30•°,则底边上的高为______,周长为______.11、在Rt △ABC 中,∠C=90°,已知tanB= 52 ,则cosA=________.12、(1)(sin60°-tan30°)cos45°= .(2)2sin 0a =,则锐角α= . 13、在△ABC 中,∠A=75°,2cosB=2,则tanC= .14、如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ACB 的值.15、已知:如图,Rt △ABC 中,∠C =90°,∠BAC =30°,延长CA 至D 点,使AD =AB .求:(1)∠D 及∠DBC ; (2)tan D 及tan ∠DBC ;16、已知:如图,Rt △ABC 中,∠C =90°,求证:(1)sin 2A +cos 2A =1;(2)sin tan cos AA A=17、已知:如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,交AD 于H 点.在底边BC 保持不变的情况下,当高AD 变长或变短时,△ABC 和△HBC 的面积的积S △ABC ·S △HBC 的值是否随着变化?请说明你的理由.解直角三角形(1)导学案主备人:张红亮 审核人:吴文志 编号: 班级: 小组: 姓名: 评价: 学习目标⑴使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形⑵通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.⑶渗透数形结合的数学思想,培养学生良好的学习习惯. 学习重点 直角三角形的解法.学习难点 三角函数在解直角三角形中的灵活运用 一、自主学习1、在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系:__________________________________. ②两锐角之间的关系:__________________________________.③边与角之间的关系:sin cos A B ==______; cos sin A B ==_______;1tan tan A B ==_____; 1t a n t a n B A==______. ④直角三角形中成比例的线段(如图所示).在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________;BC 2=_________;AC ·BC =_________. ⑤直角三角形的主要线段(如图所示).直角三角形斜边上的中线等于斜边的_________,斜边的中点是_________. 若r 是Rt △ABC (∠C =90°)的内切圆半径,则r =_________=_________. ⑥直角三角形的面积公式.在Rt △ABC 中,∠C =90°,S △ABC =_________.(答案不唯一)二、典例讲解1、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且 解这个三角形.2、在Rt △ABC 中, ∠B =30o ,b=20,解这个三角形.三、当堂测试1、Rt △ABC 中,若sinA=4,AB=10,那么BC=_____,tanB=______.2、在△ABC 中,∠C=90°,AC=6,BC=8,那么sinA=________.3、在△ABC 中,∠C=90°,sinA=35,则cosA 的值是( ) A .35 B .45 C .916.2525D 4、在Rt △ABC 中,∠C =90°.(1)已知:a =35,c =A 、∠B ,b ;(2)已知:a =2b =,求∠A 、∠B ,c ;(3)已知:2sin 3A =,6c =,求a 、b ;5、在△ABC 中,∠B=45°,∠C=60°,AB=6,求BC 的长。