第3章2_流体动力学基础-伯努利方程的应用(1)
- 格式:ppt
- 大小:1.00 MB
- 文档页数:48
浅谈伯努利方程在流体力学中的应用作者:张丽来源:《教育教学论坛》2016年第28期摘要:伯努利方程是流体力学的重要理论基础,它为我们计算工程数据及解释日常生活中的一些现象,如管道总水头的计算、香蕉球的形成原理等,提供了重要的理论依据。
关键词:伯努利方程;流体力学;研究中图分类号:G642 文献标志码:A 文章编号:1674-9324(2016)28-0207-02作为力学的一个重要分支,流体力学以流体为主要研究对象,是研究流体平衡和运动规律的科学。
流体力学在许多工业科技中有着广泛的应用。
水利工程的建设、造船工业的迅速发展都离不开水静力学和水动力学的建立和研究,航空事业则离不开气体动力学的深入发展。
一、伯努利方程的推导伯努利方程只能应用于一条流线上的不同点,且必须是不可压缩理想流体在重力场中做定常流动。
二、伯努利方程的应用(一)当流体为液体时,伯努利方程的应用(二)当流体为气体时,伯努利方程的应用能量方程④的适用条件是:流动绝热但并不要求等熵,流动可以有摩擦。
即使通过强间断面,能量方程仍然使用。
伯努利方程⑤的适用条件是:无黏性,因而无机械能损失,流动过程有无热量的输入都不影响它的应用。
只有在等熵的流动中④和⑤才能相等[3]。
三、结语在生活中的很多方面都有伯努利方程的应用,工程中有很多这样的例子,如矿山通风机工况点确定[4]、都江堰修建等,都需要很多关于流体的计算来保证工程的安全,伯努利方程就在其中起了很大的作用。
参考文献:[1]孔珑.工程流体力学[M].第三版.中国电力出版社,2007.[2]刘仁隆.故事物理学[M].科学出版社,1980:52-58.[3]刘大有.伯努利方程应用中的若干问题[J].力学与实践,1991,(4).[4]赵昌友.伯努利方程及应用[J].池州学院学报,2014,28(6):。
(完整版)流体力学第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。
分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V) 压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变(低速流动气体不可压缩)Ev=dp/(dρ/ρ)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。
质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。
第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0 流体平衡微分方程重力场下的简化:dρ=-ρdW=-ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;=C不可压缩流体静压强基本公式z+p/ρg不可压缩流体静压强分布规律p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强-当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。
第一章 绪论1-1.20℃的水2。
5m3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度增加了3.5%1—3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中、分别为水的密度和动力粘度,为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当=0.5m,y=0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1—4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm ,斜坡角22。
620(见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1—5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0。
伯努利方程的原理和应用1. 什么是伯努利方程伯努利方程是流体力学中的一条基本定律,它描述了沿着定常流体流动的路径上液体或气体的功率守恒。
该定理反映了动能、势能和压力在流体流动中的相互转换关系,是流体静力学和动力学联系的重要桥梁。
2. 伯努利方程的原理伯努利方程的原理基于下面几个假设:1.流体是不可压缩的,即密度在整个流动过程中保持不变。
2.流体是无黏的,即忽略粘度导致的能量损失。
3.流体是理想气体或液体,即无相变和化学反应。
根据以上假设,伯努利方程可以表示为:$$ P_1 + \\frac{1}{2} \\rho v_1^2 + \\rho gh_1 = P_2 + \\frac{1}{2} \\rho v_2^2 + \\rho gh_2 $$其中,$ P_1 $ 和 $ P_2 $ 是流体在不同位置的压力,$ v_1 $ 和 $ v_2 $ 是流体在不同位置的速度,$ \rho $ 是流体的密度,$ g $ 是重力加速度,$ h_1 $ 和 $ h_2 $ 是流体在不同位置的高度。
3. 伯努利方程的应用伯努利方程在工程和物理学中有着广泛的应用,下面是几个常见的应用实例:3.1 引擎燃烧室燃烧室是内燃机中的一个重要部分,伯努利方程可以用来分析燃烧室中的流动过程。
通过应用伯努利方程,可以计算出燃料和空气的流动速度和压力变化,从而优化燃烧室的设计,提高燃烧效率。
3.2 飞机翼飞机的机翼上存在着气流的不对称性,应用伯努利方程可以帮助分析气流对机翼的压力分布和升力的影响。
通过合理地设计机翼的形状和角度,可以实现更好的升力和阻力平衡,提高飞机的飞行性能。
3.3 风力发电机风力发电机是利用风能转化为电能的装置,伯努利方程可以用来分析风力发电机叶片中的气流流动。
通过合理地设计叶片的形状和角度,可以最大程度地捕捉风能,提高风力发电机的发电效率。
3.4 水力发电站水力发电站利用水流转化为电能的原理,伯努利方程可以应用于分析水流在发电站中的流动过程。
伯努利方程的原理及其应用摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
关键词:伯努利方程 发展和原理 应用1.伯努利方程的发展及其原理:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
伯努利方程的原理,要用到无黏性流体的运动微分方程。
无黏性流体的运动微分方程:无黏性元流的伯努利方程:实际恒定总流的伯努利方程:z 1+g p ρ1+g v 2121α=z 2+gp ρ2+g v 2222α+h w总流伯努利方程的物理意义和几何意义:Z ----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头;gpρ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头;g2v 2α----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw ----总流两端面间单位重量流体平均的机械能损失。
总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。
(5)总流的流量沿程不变。
(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。
(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。
2.伯努利方程的应用:伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:※文丘里管:文丘里管一般用来测量流体通过管道时的流量。
伯努利方程的原理及其应用摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
关键词:伯努利方程 发展和原理 应用1.伯努利方程的发展及其原理:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
伯努利方程的原理,要用到无黏性流体的运动微分方程。
无黏性流体的运动微分方程:无黏性元流的伯努利方程:实际恒定总流的伯努利方程:z 1+g p ρ1+g v 2121α=z 2+gp ρ2+g v 2222α+h w总流伯努利方程的物理意义和几何意义:Z ----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头;gpρ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头;g2v 2α----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw ----总流两端面间单位重量流体平均的机械能损失。
总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。
(5)总流的流量沿程不变。
(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。
(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。
2.伯努利方程的应用:伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:※文丘里管:文丘里管一般用来测量流体通过管道时的流量。
1.3 流体动力学基础 教案目录 电子课件【掌握内容】(1)基本概念:流量、流速、压头等(2)质量流量、体积流量之间关系(3)流态判断(4)连续性方程的表达式、物理意义及计算(5)伯努利方程的表达式、物理意义及计算(6)流体阻力的种类及产生的原因【理解内容】(1)管道截面上的速度分布(2)阻力计算(3)简单管路、串联管路、并联管路计算【了解内容】(1)伯努利方程的应用(2)动量方程1.3.1基本概念1.3.1.1流量与流速(1)流量:单位时间内流过管道任一截面的流体量,称为流量。
①体积流量:单位时间内流过管道任一截面的流体体积,以符号V 表示,单位为m 3/s ②质量流量:单位时间内流过管道任一截面的流体质量,以符号M 表示,单位为kg/s(2)流速:单位时间内流体的质点在流动方向上流过的距离称为流速.FV w = (m/s ) (3)质量流量与体积流量和平均流速间的关系。
wF V =(m 3/s )ρρwF V M == (kg/s )对于气体: 222111T V p T V p = 122112T T p p V V = (m 3/s ) 122111221122T T p p w T T p p F V F V w === (m/s ) [例题1-4] 某硅酸盐窑炉煅烧后产生的烟气量为10万m 3/h ,该处压强为负100Pa ,气温为800℃,经冷却后进入排风机,这时的风压为负1000Pa ,气温为200℃,求这时的排风量(不计漏风等影响)。
解: 1p =101325-100=101225Pa , 2p =101325-1000=100325Pa1T =273+800=1073K 2T =273+200=473K1V =1.0×105m 3/h 2V =1073473100325101225100.15⨯⨯⨯ =4.44×104 (m 3/h)硅酸盐窑炉系统中,可近似认为1p =2p =0p (大气压),1211212273273t t V T T V V ++== (m 3/s ) 1.3.1.2稳定流与非稳定流运动流体全部质点所占的空间称为流场。
伯努利方程的应用概述伯努利方程是流体力学中十分重要的方程之一,它描述了在不可压缩和不黏滞的流体中,沿着流线,流速增加时压力减小的现象。
这个方程被广泛应用于各种领域,包括流体力学、空气动力学、水力学、航空航天工程等。
本文将对伯努利方程的应用进行概述。
一、流体力学中的应用:1.流体力学实验:伯努利方程可以用来解释在流体力学实验中观察到的现象。
例如,在喷气装置中,当液体从小孔中喷射出来时,其速度增加,压力减小,这可以通过伯努利方程解释。
2.水力学:伯努利方程在研究液体流动、水流以及水力工程中具有广泛的应用。
例如,在水力发电站中,伯努利方程可以用来计算水流速度、水压力以及能量转换等。
3.管道流动:在管道中的流体流动中,伯努利方程可以用来分析不同位置的压力变化。
例如,在一个升压站或者消防设备中,伯努利方程可以用来计算流体的流速、压力以及流量等。
4.飞行器的气动性能:伯努利方程在航空航天工程中的应用是非常重要的。
例如,它可以用来计算飞机机翼产生的升力以及飞机的飞行性能。
二、空气动力学中的应用:1.喷气发动机:伯努利方程在喷气发动机中的应用是十分重要的。
当高速气流通过喷射嘴时,嘴内速度增加,压力降低,通过伯努利方程可以计算出发动机喷气的动力和效率。
2.空气动力学实验:伯努利方程也可以用来解释空气动力学实验中的现象。
例如,在风洞实验中,通过空气通过不同形状的模型,可以通过伯努利方程计算流体的流速、压力以及飞机的气动性能。
三、航空航天工程中的应用:1.飞行器气动性能分析:伯努利方程可以用来分析飞行器在不同飞行状态下的气动性能,例如飞机的升力、阻力等。
通过伯努利方程,可以对飞行器的设计和改进提供重要的参数和数据支持。
2.火箭发动机推力计算:伯努利方程在火箭发动机的设计和性能分析中也具有重要的应用。
通过伯努利方程,可以计算火箭喷射气流的速度、压力以及推力等。
综上所述,伯努利方程在流体力学、空气动力学以及航空航天工程中的应用是广泛而重要的。