81量子力学第六章中心力场郭华忠PPT课件
- 格式:ppt
- 大小:1.04 MB
- 文档页数:29
第二部分应用第6章不含时微扰理论6.1非简并微扰理论6.1.1 一般公式表达假设对于某些势场(比如,一维无限深势阱),我们已经解出了(定态)薛定谔方程:(6.1)ψ,从而可以得到一套完备的正交本征函数,0n(6.2)E。
现在,我们对这个势进行微小扰动(比方说,在势阱底部加入一个小突起−及对应的能量本征值0n图6.1)。
我们期望可以找到新的本征函数和本征值:(6.3) 但是除非我们非常幸运,对于这个有些复杂的势场,一般我们是不可能精确求解薛定谔方程的。
微扰理论是一套系统的理论,它可以利用已得的无微扰时地精确解求出有微扰时的近似解。
图6.1:受到小微扰的无限深势阱。
首先,我们将哈密顿量写成两项之和:(6.4)其中'H 是微扰(上标0总是表示非微扰量)。
此时,我们将λ取为一个很小的数;稍后我们会将取它为1,H 将为真实的哈密顿量。
下面我们把n ψ和n E 展为λ的幂级数:(6.5)(6.6)其中,1n E 为第n 个本征值的一级修正,1n ψ为第n 个本征函数的一级修正;2n E 和2n ψ为二级修正,以此类推。
将6.5和6.6式代入6.3式,得到:或(将λ幂次相同的项合并)对于零级(0λ)项1有,这没有什么新的内容(它就是6.1式)。
对于一级(1λ)项有,(6.7)对于二级(2λ)项有,(6.8)以此类推。
(方程中并没有λ——它仅仅用来更清楚地按数量级分出各方程——所以现在把λ取为1。
)6.1.2 一级近似理论将0n ψ与6.7式进行内积运算(即乘以(0n ψ)*后积分),1级数展开的唯一性(见第2章,脚标25)保证了相同幂次的系数是相等的。
但是0H 为厄米算符,所以它和右边第一项相抵消。
又有001n n ψψ=,所以,2(6.9)这就是一级近似理论的一个最基本的结果;在实际中,它也是量子力学最重要的方程。
它说明能量的一级修正就是微扰在非微扰态中的期待值。
例子6.1 无微扰的无限深势阱波函数为(2.28式):图6.2:存在于整个势阱的常微扰。