叠加弯矩图最简单原理
- 格式:ppt
- 大小:362.00 KB
- 文档页数:9
2.6叠加法作弯矩图当梁在荷载作用下变形微小,因而在求梁的支反力、剪力、弯矩时可直接代入梁的原始尺寸进行计算,且所得结果与梁上荷载成正比。
在这种情况下,当梁上有几项荷载作用时,由每一项荷载所引起的梁的支反力或内力,将不受其他荷载的影响。
所以在计算梁的某截面上的弯矩时,只需先分别算出各项荷载单独作用时在该截面上引起的弯矩,然后求它们的代数和即得到该截面上的总弯矩。
这种由几个外力共同作用引起的某一参数(内力、位移等)等于每一外力单独作用时引起的该参数值的代数和的方法,称为叠加法。
叠加法的应用很广,它的应用条件是:需要计算的物理量(如支反力、内力以及以后要讨论的应力和变形等)必须是荷载的线性齐次式。
也就是说,该物理量的荷载表达式中既不包含荷载的一次方以上的项,也不包含荷载的零次项。
例题2-9试按叠加原理做例题2-9图(a)所示简支梁的弯矩图。
求梁的极值弯矩和最大弯矩。
解:先将梁上每一项荷载分开(见图(b)、图(c)),分别做出力偶和均布荷载单独作用的弯矩图(见图(d)、图(e))两图的纵坐标具有不同的正负号,在叠加时可把它们画在x 轴同一侧(见图f)。
于是两图共有部分,其正、负纵坐标值互相抵消。
剩下的纵距(见图(f)中阴影线部分)即代表叠加后的弯矩值。
叠加后的弯矩图仍为抛物线。
如将它改画为以水平直线为基线的图,即得通常形式的弯矩图(见图(曲)。
求极值弯矩时,先要确定剪力为零的截面位置。
由平衡方程0Bm =∑可求得支反,剪力方程为Q 即可求出极值弯矩所在截面的位置。
令()0x极值弯矩为由例题2-9图(g)可见,全梁最大弯矩为本例中的极值弯矩并不大于梁的最大值弯矩。
当梁上的荷载较复杂时,也可将梁按荷载情况分段,求出每一段梁两端截面的内力。
这时该段梁的受载情况等效于一受相同荷载的简支梁 (见图2-12(a)、(b))。
因为每一段梁在平面弯曲时的内力,不外是轴力N、剪力Q和弯矩M。
由于轴力N不产生弯矩,故在作弯矩图时可将它略去,剩下的梁端剪力1Q,2Q和梁端弯矩1M、2M,及荷载对梁段的作用,可用图2-12(b)所示的简支梁上相应的荷载来代替(梁段端截面上的剪力可由梁的支反力提供,故图中未画出)。
叠加法在绘制弯矩图中的应用作者:詹景元石煜威朱芳振来源:《建材发展导向》2015年第03期摘要:弯矩图是结构力学最为重要和基础的知识点,是后续变形和位移计算的关键内容。
但是现在的大部分教材对于弯矩图的绘制技巧和一些特殊情况的处理方法的介绍并不是很多,只是通过几道例题去将弯矩图的画法展现出来,让学生自己去理解,这便使得不少学生对于弯矩图的绘制感到无从下手。
文章通过对书本上例题的理解分析,总结出叠加法运用在绘制弯矩图中的一些简单的基本理念和分析方法。
关键词:弯矩图;叠加法;静定结构1 叠加法的介绍1.1 叠加法的前提条件材料力学讨论的杆件均满足几个基本假设,其中,小变形假设是指构件在承受荷载作用时,所产生的变形和构件的原始尺寸相比非常微小。
由于变形量微小,我们在研究杆件的支反力、内力、应力、变形等问题时都可以用构件的原始尺寸和形状进行计算,不必考虑构件受荷变形后尺寸变化给计算带来的影响。
同时,采用构件的原始尺寸进行计算所得的支反力、内力、应力、变形均与梁上的荷载保持线性关系。
1.2 叠加法的使用条件叠加法的理论依据就是叠加原理,它不仅可以用来梁的位移,也可用来计算梁的支反力、内力和应力;它不仅可用于梁,也可用于拉(压)杆和其他结构。
一般来说,当构件或结构上同时作用几个荷载时,如果各荷载产生的效果(应力、反力、内力和位移等)互不影响(或影响甚小可忽略不计),则它们所产生的总效果即等于各荷载单独作用时所产生的效果总和(或为代数和,或为矢量和,由所求的物理量的性质而定)。
在土木工程实践中,一般的梁工作时变形很小,由梁上荷载产生的剪力和弯矩与荷载呈线性关系,并且其跨长的改变可以略去不计。
因此当梁上同时受到几个载荷作用时,由每一个载荷所引起的梁的内力将不受其他载荷的影响,满足叠加原理的条件,即可用叠加法来计算梁的内力(包括剪力、弯矩等)。
1.3 叠加法的使用准备梁的内力采用叠加法来求解时,必须要对简单梁承受单个基本荷载时的内力分布比较熟悉,这样叠加计算才会比较简单便捷。
2.6叠加法作弯矩图当梁在荷载作用下变形微小,因而在求梁的支反力、剪力、弯矩时可直接代入梁的原始尺寸进行计算,且所得结果与梁上荷载成正比。
在这种情况下,当梁上有几项荷载作用时,由每一项荷载所引起的梁的支反力或内力,将不受其他荷载的影响。
所以在计算梁的某截面上的弯矩时,只需先分别算出各项荷载单独作用时在该截面上引起的弯矩,然后求它们的代数和即得到该截面上的总弯矩。
这种由几个外力共同作用引起的某一参数(内力、位移等)等于每一外力单独作用时引起的该参数值的代数和的方法,称为叠加法。
叠加法的应用很广,它的应用条件是:需要计算的物理量(如支反力、内力以及以后要讨论的应力和变形等)必须是荷载的线性齐次式。
也就是说,该物理量的荷载表达式中既不包含荷载的一次方以上的项,也不包含荷载的零次项。
例题2-9试按叠加原理做例题2-9图(a)所示简支梁的弯矩图。
求梁的极值弯矩和最大弯矩。
解:先将梁上每一项荷载分开(见图(b)、图(c)),分别做出力偶和均布荷载单独作用的弯矩图(见图(d)、图(e))两图的纵坐标具有不同的正负号,在叠加时可把它们画在x 轴同一侧(见图f)。
于是两图共有部分,其正、负纵坐标值互相抵消。
剩下的纵距(见图(f)中阴影线部分)即代表叠加后的弯矩值。
叠加后的弯矩图仍为抛物线。
如将它改画为以水平直线为基线的图,即得通常形式的弯矩图(见图(曲)。
求极值弯矩时,先要确定剪力为零的截面位置。
由平衡方程0Bm =∑可求得支反,剪力方程为Q 即可求出极值弯矩所在截面的位置。
令()0x极值弯矩为由例题2-9图(g)可见,全梁最大弯矩为本例中的极值弯矩并不大于梁的最大值弯矩。
当梁上的荷载较复杂时,也可将梁按荷载情况分段,求出每一段梁两端截面的内力。
这时该段梁的受载情况等效于一受相同荷载的简支梁 (见图2-12(a)、(b))。
因为每一段梁在平面弯曲时的内力,不外是轴力N、剪力Q和弯矩M。
由于轴力N不产生弯矩,故在作弯矩图时可将它略去,剩下的梁端剪力1Q,2Q和梁端弯矩1M、2M,及荷载对梁段的作用,可用图2-12(b)所示的简支梁上相应的荷载来代替(梁段端截面上的剪力可由梁的支反力提供,故图中未画出)。