叠加法作弯矩图
- 格式:ppt
- 大小:776.50 KB
- 文档页数:14
2.6叠加法作弯矩图当梁在荷载作用下变形微小,因而在求梁的支反力、剪力、弯矩时可直接代入梁的原始尺寸进行计算,且所得结果与梁上荷载成正比。
在这种情况下,当梁上有几项荷载作用时,由每一项荷载所引起的梁的支反力或内力,将不受其他荷载的影响。
所以在计算梁的某截面上的弯矩时,只需先分别算出各项荷载单独作用时在该截面上引起的弯矩,然后求它们的代数和即得到该截面上的总弯矩。
这种由几个外力共同作用引起的某一参数(内力、位移等)等于每一外力单独作用时引起的该参数值的代数和的方法,称为叠加法。
叠加法的应用很广,它的应用条件是:需要计算的物理量(如支反力、内力以及以后要讨论的应力和变形等)必须是荷载的线性齐次式。
也就是说,该物理量的荷载表达式中既不包含荷载的一次方以上的项,也不包含荷载的零次项。
例题2-9试按叠加原理做例题2-9图(a)所示简支梁的弯矩图。
求梁的极值弯矩和最大弯矩。
解:先将梁上每一项荷载分开(见图(b)、图(c)),分别做出力偶和均布荷载单独作用的弯矩图(见图(d)、图(e))两图的纵坐标具有不同的正负号,在叠加时可把它们画在x 轴同一侧(见图f)。
于是两图共有部分,其正、负纵坐标值互相抵消。
剩下的纵距(见图(f)中阴影线部分)即代表叠加后的弯矩值。
叠加后的弯矩图仍为抛物线。
如将它改画为以水平直线为基线的图,即得通常形式的弯矩图(见图(曲)。
求极值弯矩时,先要确定剪力为零的截面位置。
由平衡方程0Bm =∑可求得支反,剪力方程为Q 即可求出极值弯矩所在截面的位置。
令()0x极值弯矩为由例题2-9图(g)可见,全梁最大弯矩为本例中的极值弯矩并不大于梁的最大值弯矩。
当梁上的荷载较复杂时,也可将梁按荷载情况分段,求出每一段梁两端截面的内力。
这时该段梁的受载情况等效于一受相同荷载的简支梁 (见图2-12(a)、(b))。
因为每一段梁在平面弯曲时的内力,不外是轴力N、剪力Q和弯矩M。
由于轴力N不产生弯矩,故在作弯矩图时可将它略去,剩下的梁端剪力1Q,2Q和梁端弯矩1M、2M,及荷载对梁段的作用,可用图2-12(b)所示的简支梁上相应的荷载来代替(梁段端截面上的剪力可由梁的支反力提供,故图中未画出)。
直杆弯矩图的叠加法直杆弯矩图的叠加法 ,绘制线弹性结构中直杆段的弯矩图,采用直杆弯矩图的叠加法。
直杆弯矩图的叠加法可叙述为:任一直杆,如果已知两端的弯矩,则杆件的弯矩图等于在两端弯矩坐标的连线上再叠加将该杆作为简支梁在荷载作用下的弯矩图,如图2-1所示。
作弯矩图时,弯矩值坐标绘在杆件受拉一边,弯矩图中不要标明正、负号。
直杆内力图的特征 ,在直杆中,根据荷载集度q,弯矩M、剪力V之间的微分关系dV/dx=q,dM/dx=V、d2M/dx2=q,可推出荷载与内力图的一些对应关系,这些对应关系构成了弯矩图与剪力图的形状特征(表2—1)。
表2—1 更多结构工程师好资料~无外力区集中力偶M。
梁上情况均布力q作用区段集中力P作用处铰处段作用处有突变(突剪力图水平线斜直线为零处如变号无变化变值,P)抛物线(凸有尖角(尖一般为斜有突变(突弯矩图出方向同有极值角指向同P有极值为零直线变值—M。
) q指向) 指向)注意到截面上轴力与剪力是互相垂直的,只要根据剪力图的特征,并结合杆件上的荷载情况,就可得到轴力图的特征。
熟悉掌握内力图的特征,便于绘制和校核内力图。
(二)三铰拱的合理拱轴 ,在某种固定荷载作用下,拱的所有截面的弯矩均为零的轴线称为合理拱轴。
三铰拱在竖向荷载作用下合理拱轴的一般表达式,可根据合理拱轴的定义,令式 (2—4)等于零,得合理拱轴方程为更多结构工程师好资料~y,M0,H (2—7)图2—8a所示三铰拱承受满跨均布荷载q作用,其具体的合理拱轴方程可按式(2,7)推导如下:按图2—8a所示坐标系,将代梁(图2—8b)的弯矩方程M0,qx(l,x),2及拱的水平推力H,MC0,f,ql2,8f代人式(2—7)得拱的合理拱轴方程为y,4fx(l,x),l2 (2—8)顺便指出,三铰拱在满跨填料重量作用下的合理拱轴为悬链曲线;在径向均布荷载作用下的合理拱轴为圆弧线。
(三)三铰刚架的内力计算分析图2—9a所示的三铰刚架,绘制其弯矩、剪力、轴力图。
2.6叠加法作弯矩图当梁在荷载作用下变形微小,因而在求梁的支反力、剪力、弯矩时可直接代入梁的原始尺寸进行计算,且所得结果与梁上荷载成正比。
在这种情况下,当梁上有几项荷载作用时,由每一项荷载所引起的梁的支反力或内力,将不受其他荷载的影响。
所以在计算梁的某截面上的弯矩时,只需先分别算出各项荷载单独作用时在该截面上引起的弯矩,然后求它们的代数和即得到该截面上的总弯矩。
这种由几个外力共同作用引起的某一参数(内力、位移等)等于每一外力单独作用时引起的该参数值的代数和的方法,称为叠加法。
叠加法的应用很广,它的应用条件是:需要计算的物理量(如支反力、内力以及以后要讨论的应力和变形等)必须是荷载的线性齐次式。
也就是说,该物理量的荷载表达式中既不包含荷载的一次方以上的项,也不包含荷载的零次项。
例题2-9试按叠加原理做例题2-9图(a)所示简支梁的弯矩图。
求梁的极值弯矩和最大弯矩。
解:先将梁上每一项荷载分开(见图(b)、图(c)),分别做出力偶和均布荷载单独作用的弯矩图(见图(d)、图(e))两图的纵坐标具有不同的正负号,在叠加时可把它们画在x 轴同一侧(见图f)。
于是两图共有部分,其正、负纵坐标值互相抵消。
剩下的纵距(见图(f)中阴影线部分)即代表叠加后的弯矩值。
叠加后的弯矩图仍为抛物线。
如将它改画为以水平直线为基线的图,即得通常形式的弯矩图(见图(曲)。
求极值弯矩时,先要确定剪力为零的截面位置。
由平衡方程0Bm =∑可求得支反,剪力方程为Q 即可求出极值弯矩所在截面的位置。
令()0x极值弯矩为由例题2-9图(g)可见,全梁最大弯矩为本例中的极值弯矩并不大于梁的最大值弯矩。
当梁上的荷载较复杂时,也可将梁按荷载情况分段,求出每一段梁两端截面的内力。
这时该段梁的受载情况等效于一受相同荷载的简支梁 (见图2-12(a)、(b))。
因为每一段梁在平面弯曲时的内力,不外是轴力N、剪力Q和弯矩M。
由于轴力N不产生弯矩,故在作弯矩图时可将它略去,剩下的梁端剪力1Q,2Q和梁端弯矩1M、2M,及荷载对梁段的作用,可用图2-12(b)所示的简支梁上相应的荷载来代替(梁段端截面上的剪力可由梁的支反力提供,故图中未画出)。
转贴
[解] 此组合结构中,除AC、BC杆为受弯杆件外,其余均为轴力杆。
(1)求支座反力
由整体平衡条件,得VA=VB=75kN,HA=0.
(2)通过铰C作I—I截面,由该截面左边隔离体的平衡条件ΣMc=0,得NDE=135kN(拉力);由ΣY=0,Qc=—15kN;由ΣX=0,得NC =—135kN(压力)。
(3)分别由结点D、E的平衡条件,得NDA=NEB=151kN(拉力),NDF=NEG=67.5kN(压力)。
更多结构工程师好资料!(4)根据铰C处的剪力Qc及轴力Nc,并按直杆弯矩图的叠加法就可绘出受弯杆AFC、BGC的弯矩图。
(5)M、Q、N图分别如图2—17b、c、d所示。
广义力和广义位移
以各种不同方式作用在结构上的力,如集中力、集中力偶、分布力、分布力偶等都称为广义力,它可以是外力,也可以是内力。
与广义力对应的位移称为广义位移。
或能唯一地决定结构几何位置改变的彼此独立的量称为广义位移,如线位移、角位移、相对线位移、相对角位移等。
更多结构工程师好资料!
本节主要介绍静定结构在广义力、温度变化、支座位移等因素作用下的广义位移计算。
建筑力学中应用叠加法绘制弯矩图的新探讨程晶晶(兰州现代职业学院城市建设学院 甘肃兰州 730030)摘要:建筑设计流体力学是指人们通过对自然界现象的观察,以及在劳动中的经验总结。
建筑设计流体力学在由建筑物结构所形成的客观世界中,起到了最基本的认识功能。
在工程流体力学中,利用叠加法在绘制最大弯矩图中具有很大的意义。
通常的绘制最大弯矩图的办法主要有方程法、规则法和叠加法,其中利用叠加法是一个比较实用、便捷的办法,在工程流体力学计算中也被普遍应用。
该文重点探讨了运用叠加法怎样描绘杆系构件的最大弯矩图形,为建筑力学实验教学中提出了有益的借鉴。
关键词:建筑力学 叠加法 矩图 探讨中图分类号:G64文献标识码:A 文章编号:1672-3791(2023)16-0150-04 New Discussion of Using the Superposition Method to Draw Bending Moment Diagrams in Architectural MechanicsCHENG Jingjing(School of Urban Construction, Lanzhou Modern Vocational College, Lanzhou, Gansu Province, 730030 China) Abstract:Architectural design fluid mechanics refers to the summary of people's experience in labor through the observation of natural phenomena. Architectural design fluid mechanics plays the most basic cognitive function in the objective world formed by the structure of buildings. In engineering fluid mechanics, the use of the superposi‐tion method is of great significance in drawing the maximum bending moment diagram. The common methods for drawing the maximum bending moment diagram mainly include the equation method, rule method and superposi‐tion method, among which the superposition method is a more practical and convenient method, and it is also widely used in the calculation of engineering fluid mechanics. This paper mainly discusses how to use the superpo‐sition method to describe the maximum bending moment figure of the member system, which provides a useful reference for the experimental teaching of engineering mechanics.Key Words: Architectural mechanics; Superposition method; Bending moment diagram; Discussion力学的概念起源于古人对自然现象的观察、在自然界生产活动过程中总结的经验。
1.1.3区段叠加法作直梁弯矩图
在小变形情况下,依据力的独立性原理,复杂荷载引起的弯矩图,可分区段用单一荷载引起的弯矩图叠加的方法,即区段叠加法进行
绘制。
可按以下三个步骤进行:
●一求控制弯矩:首先,求两杆端的弯矩,常可直接判断(对于简支梁两端铰支处、悬臂梁的悬臂端,若无集中力偶作用,其弯
矩均为零;若有集中力偶作用,其弯矩即等于该集中力偶);其次,求外力不连续点处的弯矩(如集中力作用点、均布荷载的起点和终点、集中力偶作用点两侧的弯矩),用载面法即可方便求得。
●二引直线相连:将相邻二控制弯矩用直线相连(当二控制截面间无横向荷载作用时,用实线连接,即为该区段弯矩图形;当二
控制截面间尚有横向荷载作用时,则用虚线连接,作为新的“基线”,然后再按下面的第“三”步叠加)。
●三叠简支弯矩:在新的“基线”上,叠加该区段按简支梁求得的弯矩图(注意:所叠加的二竖标均应垂直于原杆轴)。
现以图1-3所示简支伸臂梁为例,用区段叠加法绘制其弯矩图。
其计算步骤示于图1-3b-d中(具体计算过程从略)。
图1-3“区段叠加法”分步示意图
(二)对于曲线弯矩图叠加曲线弯矩图的情况
找出一些控制弯矩值(至少三点),中间连以适当曲线,主要是定好弯曲方向,一般为连续光滑曲线。