15 章 玻璃的退火与淬火解析
- 格式:ppt
- 大小:1.95 MB
- 文档页数:27
玻璃的退火工艺一、玻璃的退火工艺包括哪几个阶段为了清理玻璃中的应力,必须把玻璃加热到低于玻璃转变温度Tg 附近某一温度进行保温均热,以清理玻璃各部分的温度梯度,使应力松弛,这个选定的保温均热温度称玻璃的退火温度.玻璃在退火温度下,由于粘度很大还不会发生可测得的变形.玻璃的退火上限温度是指在此温度下经过 3min 能清理 95 %的应力;退火下限温度是指在此温度下经 3min 只能清理 5 %的应力,上下限退火温度之间为退火温度范围.大部分器皿玻璃的退火上限温度为550 ± 20 ℃ ,平板玻璃为 550 ~ 570 ℃ 、瓶罐玻璃为550 ~ 600 ℃ .实际上,一般采用的退火温度都比退火上限温度低20 ~ 30 ℃ ,低于退火上限温度50 ~ 150 ℃ 的为退火下限温度. 玻璃的退火温度与其化学组成有关.凡能降低玻璃粘度的组成也能降低退火温度,如碱金属氧化物 Na 2 0 、 K 2 O 等. SiO 2 、 Al 2 O 3 、 CaO 等都增加玻璃粘度,所以随着它们含量的增加其退火温度都提高.玻璃的退火制度与制品的种类、形状、大小、容许的应力值、退火炉内温度分布等情况有关.目前采用的退火制度有多种形式.根据退火原理,退火工艺可分为四个阶段:加热阶段、均热阶段、慢冷阶段和快冷阶段.按上述四个阶段可作出温度-时间曲线,此曲线称退火曲线.1 .加热阶段不同品种的玻璃有不同的退火工艺.有的玻璃在成型后直接进入退火炉进行退火,称为一次退火;有的制品在成型冷却后再经加热退火,称为二次退火.所以加热阶段对有些制品并不是必要的.在加热过程中,玻璃表面产生压应力,所以加热速率可相应高些,例如20 ℃ 的平板玻璃可直接进入700 ℃ 的退火炉,其加热速率可高达300 ℃ / rain .考虑到制品大小、形状、炉内温度分布的不均性等因时间素,在生产中一般采用的加热速率为20/a 2 ~ 30/a 2 ( ℃ /min) ,对光学玻璃制品的要求更高.2 .均热阶段把制品加热到退火温度进行保温、均热以清理应力.在本阶段中首先要确定退火温度,其次是保温时间.一般把比退火上限温度低20 ~ 30 ℃ 作为退火温度.退火温度除直接测定外,也可根据玻璃成分计算粘度为10 12 Pa ? s 时的温度.当退火温度确定后,保温时间可按 70a 2 ~ 120a2 进行计算,或者按应力容许值进行计算.3 .慢冷阶段为了使玻璃制品在冷却后不产生应力,或减小到制品所要求的应力范围内,在均热后进行慢冷是必要的,以防止过大的温差.4 .快冷阶段玻璃在应变点以下冷却时,如前述只产生暂时应力,只要它不超过玻璃的较限强度,就可以加快冷却速度以缩短整个退火过程、降低燃料消耗、提高生产率.在生产上,一般都采用较低的冷却速度,这是由于制品或多或少存在某些缺点,以免在缺点与主体玻璃间的界面上产生张应力.对一般技术玻璃采用此值的 15 %~ 20 %,通常还应在生产实践中加以调整.二、退火玻璃的详细制作流程为了避免冷却过快而造成玻璃炸裂,玻璃毛坯定型后立即转入退火用的箱式电阴炉中,在退火温度下保温30min左右,然后按照冷却温度制度降温到一定温度后切断电源停止加热,让其随炉自然缓慢冷却至100℃以下,出炉,在空气中冷却至室温.若玻璃试样退火后经应力检验不合格,须重新退火,以防加工时碎裂.重新退火时首先将样品埋没于装满石英砂的大坩埚中,再把坩埚置于马弗炉内,升温至退火温度保温1h,然后停止加热让电炉缓慢降温(必要时在上、下限退火温度范围内每降温10℃保温一段时间),直至100℃以下取出.相关概念热应力温度改变时,物体由于外在约束以及内部各部分之间的相互约束,使其不能完全自由胀缩而产生的应力。
正火、退火、淬火、回火退火与回火的区别在于:(简单地说,退火就是不要硬度,回火还保留一定硬度)。
退火、正火、淬火、回火对比和区别1、退火、正火、淬火、回火是整体热处理中的四种基本工艺,称为“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。
整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。
2、退火:是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。
3、正火;是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
4、淬火;是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。
淬火后钢件变硬,但同时变脆。
为了降低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。
了解退火、淬火、回火的差异和作用: 1.退火概念:所谓退火,就是将金属或合金加热到适当温度,保温一定时间,然后随炉缓慢冷却的热处理工艺,其实质是将钢加热奥氏体化后进行珠光体转变。
退火目的和作用:(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工;(2)细化晶粒,消除因锻、焊等引起的组织缺陷,均匀钢的组织成分,改善钢的性能或为以后的热处理作准备;(3)消除钢中的内应力,以防止变形或开裂。
2.淬火概念:淬火就是将钢加热到Ac3或Ac1点以上某一温度,保持一定时间,然后以适当速度冷却获得马氏体和(或)贝氏体组织的热处理工艺。
淬火目的和作用:淬火的目的是使过冷奥氏体进行马氏体(或贝氏体)转变,得到马氏体(或贝氏体)组织,然后配合以不同温度的回火,获得所需的力学性能。
(注: 淬火态工件不允许直接投入现场使用,通常在此之后必须实时进行1~2 次或以上之回火加工,以调整其组织及应力等。
第15章玻璃的退火与钢化玻璃制品在生产过程中(即由熔融状态的玻璃液变成脆性固体玻璃制品),玻璃经受激烈的不均匀的温度变化,使内外层产生温度梯度,硬化速度不一样,引起制品中产生不规则的热应力。
这种热应力能降低制品的机械强度和热稳定性,也影响玻璃的光学均一性,若应力超过制品的极限强度,便会自行破裂。
所以玻璃制品中存在不均匀的热应力是一项重要的缺陷。
退火是一种热处理过程,可使玻璃中存在的热应力尽可能地消除或减小至允许值。
除玻璃纤维和薄壁小型空心制品外,几乎所有玻璃制品都需要进行退火。
对于光学玻璃和某些特种玻璃,退火要求十分严格,必须在退火的温度范围内保持相当长的时间,使它各部分的结构均匀,然后以最小的温差进行降温,以达到要求的光学性能,这种退火称为精密退火。
玻璃制品存在热应力并不经常是有害的。
若通过人为的热处理过程使玻璃表面层产生有规律的、均匀分布的压应力,还能提高玻璃制品的机械强度和热稳定性。
这种热处理方法称为玻璃的钢化。
化学组成相同的玻璃钢化与不钢化具有截然不同的性能。
但并非所有的玻璃制品都能进行钢化。
15.1 玻璃中的应力物质内部单位截面上的相互作用力称为内应力。
玻璃的内应力根据产生的原因不同可分为三类:因温度差产生的应力,称为热应力;因组成不一致而产生的应力,称为结构应力;因外力作用产生的应力,称为机械应力。
15.1.1 玻璃中的热应力玻璃中的热应力按其存在的特点,分为暂时应力和永久应力。
15.1.1.1 暂时应力温度低于应变点而处于弹性变形温度范围内的玻璃,在加热或冷却的过程中,即使加热或冷却的速度不是很大,玻璃的内层和外层也会形成一定的温度梯度,从而产生一定的热应力。
这种热应力,随着温度梯度的存在而存在,随着温度梯度的消失而消失,所以称为暂时应力。
图15-l表明玻璃经受不同的温度变化时,暂时应力的产生和消失过程。
设一块一定厚度、没有应力的玻璃板,从常温加热至该玻璃应变点以下某一温度,经保温使整块玻璃板中不存在温度梯度[图15-l(a)]。
浮法玻璃的退火1 浮法玻璃退火的原理和目的玻璃液在锡槽成形后经过退火窑退火,由高温可塑性状态转变为室温固态玻璃的过程是逐步控制的降温过程。
在此过程中,由于玻璃是热的不良导体,其不同部位及内外层会产生温度梯度,造成硬化速度不一样,将引起玻璃板产生不均匀的内应力,这种热应力如果超过了玻璃板的极限强度,便会产生炸裂。
同时,内应力分布不均也易引起切割上的困难。
浮法玻璃退火的目和就是消除和均衡这种内应力,防止玻璃板的炸裂和利于玻璃板的切割。
浮法玻璃的应变点温度即退火下限温度是一个关键的温度点,通常情况下在470℃左右。
退火窑在此温度之前称为退火区,玻璃板处在塑性状态;在此温度之后称为冷却区,玻璃板处于弹性状态。
玻璃板在塑性状态和弹性状态下会产生不同的应力(张应力和压应力),调整方向正好相反。
由于浮法玻璃是连续性的生产,玻璃板是连续运动的玻璃带,其退火与传统退火理论有所不同。
如:玻璃板下由于紧贴辊道,散热空间较板上小,相同的情况下,板上的散热量要高于板下,浮法玻璃的退火我们主要考虑玻璃板横向和上下表面的温度控制,退火后理想的状态是;玻璃板有一定的应力曲线分布(边部受压应力、中部受张应力、板上受张应力、板下受压应力),使其具有一定的强度,又不易破碎和有利于切割。
2 退火窑的主要结构和分区现在浮法退火窑是全钢电加热风冷型,主要的结构有两种:比利时的克纳德冷风工艺和法国的斯坦茵热风工艺。
现在国内大多数采用克纳德结构,我们主要讨论此结构的退火窑。
退火窑一般分力7个区,从前至后分别是A区、B区、C区、D区、E区、Ret区和F区,有的区还可分成几个小区。
A区:又称加热均热区,温度范围在600~550℃,在此区玻璃板尽可能均化开,自动控制达到退火前的温度范围,此区设有上、下电加热抽屉及管束式辐射冷却器,冷却方式为风机抽风,辐射换热冷却。
B区:又称重要退火区,温度范围在550~450℃。
此区是玻璃板产生永久应力区。
控制好冷却速度,可以减少永久应力。
教你区分退火、回火、淬火退火annealing将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。
目的是使经过铸造、锻轧、焊接或切削加工的材料或工件软化,改善塑性和韧性,使化学成分均匀化,去除残余应力,或得到预期的物理性能。
退火工艺随目的之不同而有多种,如重结晶退火、等温退火、均匀化退火、球化退火、去除应力退火、再结晶退火,以及稳定化退火、磁场退火等等。
退火的一个最主要工艺参数是最高加热温度(退火温度),大多数合金的退火加热温度的选择是以该合金系的相图为基础的,如碳素钢以铁碳平衡图为基础(图1)。
各种钢(包括碳素钢及合金钢)的退火温度,视具体退火目的的不同而在各该钢种的Ac3以上、Ac1以上或以下的某一温度。
各种非铁合金的退火温度则在各该合金的固相线温度以下、固溶度线温度以上或以下的某一温度。
重结晶退火应用于平衡加热和冷却时有固态相变(重结晶)发生的合金。
其退火温度为各该合金的相变温度区间以上或以内的某一温度。
加热和冷却都是缓慢的。
合金于加热和冷却过程中各发生一次相变重结晶,故称为重结晶退火,常被简称为退火。
这种退火方法,相当普遍地应用于钢。
钢的重结晶退火工艺是:缓慢加热到Ac3(亚共析钢)或Ac1(共析钢或过共析钢)以上30~50℃,保持适当时间,然后缓慢冷却下来。
通过加热过程中发生的珠光体(或者还有先共析的铁素体或渗碳体)转变为奥氏体(第一回相变重结晶)以及冷却过程中发生的与此相反的第二回相变重结晶,形成晶粒较细、片层较厚、组织均匀的珠光体(或者还有先共析铁素体或渗碳体)。
退火温度在Ac3以上(亚共析钢)使钢发生完全的重结晶者,称为完全退火,退火温度在Ac1与Ac3之间 (亚共析钢)或Ac1与Acm之间(过共析钢),使钢发生部分的重结晶者,称为不完全退火。
前者主要用于亚共析钢的铸件、锻轧件、焊件,以消除组织缺陷(如魏氏组织、带状组织等),使组织变细和变均匀,以提高钢件的塑性和韧性。