实验八-模型设定偏误问题
- 格式:doc
- 大小:367.50 KB
- 文档页数:8
关于物理学实验结果不确定性误差修正模型建立问题交流物理学实验结果的不确定性误差是实验数据中存在的一种固有的不确定性,它反映了实验数据与真实值之间的差异。
在科学研究和工程应用中,正确估计和修正实验数据的不确定性误差对于确保实验结果的可靠性至关重要。
然而,在建立物理学实验结果不确定性误差修正模型时,我们需要考虑一些关键的问题,以确保模型的准确性和适用性。
首先,我们需要明确实验的目的和测量的物理量,以及其所对应的不确定性的来源。
不同的实验目的和测量物理量,其误差来源可能会有所不同。
例如,在测量长度时,不确定性误差可能来自使用的测量仪器的精度、读数的准确性以及实验环境的影响等。
因此,在建立修正模型时,我们需要详细分析不同来源的误差,并针对性地采取相应的修正方法。
其次,我们需要选择适当的数学模型来描述实验数据的不确定性误差。
常用的数学模型包括高斯分布模型和泊松分布模型等。
高斯分布模型适用于大量测量次数的平均值以及连续变量的测量,而泊松分布模型适用于稀有事件的计数测量。
选择合适的数学模型可以更准确地估计实验数据的不确定性误差,并为后续的修正提供准确的基础。
接下来,我们需要考虑系统误差和随机误差的修正。
系统误差是由于实验设备或者测量方法本身的固有偏差而产生的误差。
例如,使用的测量仪器可能存在零位误差或者非线性误差。
修正系统误差需要采取一系列的校准措施,如零位校准、非线性校正等。
而随机误差是由于实验过程中的环境因素或者操作者的技术能力等所引起的随机波动。
为了修正随机误差,我们可以通过增加测量次数来提高数据的统计精度,或者采用统计方法来估计实验数据的不确定性。
最后,我们需要评估修正模型的可靠性和适用性。
通过比较修正后的实验数据与其他独立实验结果的一致性,可以验证修正模型的可靠性。
此外,我们还可以进行模型的稳定性分析和敏感性分析,以评估修正模型对不确定性误差的估计是否受到参数选择的影响。
如果修正模型在不同条件下都能得到稳定的修正结果,并且对参数选择较不敏感,那么就可以认为修正模型具有较好的适用性。
实验八-模型设定偏误问题实验八 模型设定偏误问题姓名:何健华 学号:201330110203 班级:13金融数学2班 一 实验目的:掌握模型设定偏误问题的估计与应用,熟悉 EViews 的基本操作。
二 实验要求:应用教材 P183 例子 5.3.1 的案例,利用RESET 检验检验模型设定偏误问题;应用教材 P185 例子 5.3.2 的案例,利用Box-Cox 变换比较线性模型与双对数线性模型的优劣。
三 实验原理:普通最小二乘法、阿尔蒙法、格兰杰因果关系检验、DW 检验。
四 预备知识:普通最小二乘法,F 检验,Box -Cox 变换。
五 实验步骤一、下表列出了中国某年按行业分的全部制造业国有企业及规模以上制造业非序号 工业总产值Y(亿元) 资产合计K(亿元) 职工人数L (万人)序号工业总产值Y(亿元) 资产合计K (亿元) 职工人数L (万人)1 3722.70 3078.22 113 17 812.70 1118.81 43 2 1442.52 1684.43 67 18 1899.70 2052.16 61 3 1752.37 2742.77 84 19 3692.85 6113.11 240 4 1451.29 1973.82 27 20 4732.90 9228.25 222 5 5149.30 5917.01 327 21 2180.23 2866.65 806 2291.16 1758.77 120 22 2539.76 2545.63 96 7 1345.17 939.10 58 23 3046.95 4787.90 222 8 656.77 694.94 31 24 2192.63 3255.29 163 9 370.18 363.48 16 25 5364.83 8129.68 244 10 1590.36 2511.99 66 26 4834.68 5260.20 145 11 616.71 973.73 58 27 7549.58 7518.79 138 12 617.94 516.01 28 28 867.91 984.52 46 13 4429.19 3785.91 61 29 4611.39 18626.94 218 14 5749.02 8688.03 254 30 170.30 610.91 19 15 1781.37 2798.90 83 31 325.531523.1945161243.071808.4433确设定的模型,将如何检验哪一个模型设定更正确? i i i i L K Y μβββ+++=2101.建立工作工作文件并录入数据,得到图1.1图1.12.采用RESET 检验来检验模型的设定偏误 2.1对于原幂函数形式的模型,变换成双对数模型 0lnY alnK lnL ββμ=+++采用OLS 进行估计,估计结果如图1.2。
实验八:协整关系检验与误差修正模型(ECM)new实验八:协整关系检验与误差修正模型(ECM)一、实验目的通过上机实验,使学生加深对时间序列之间协整关系的理解,能够运用Eviews 软件检验时间序列数据之间的协整关系并以此估计误差修正模型(ECM)。
二、预备知识(1)用EViews估计线性回归模型的基本操作;(2)时间序列数据的协整关系及其检验方法;(3)误差修正模型的结构及估计方法。
三、实验内容(1)用EViews检验两个时间序列数据的协整关系;(2)用EViews估计误差修正模型;四、实验步骤(一)、建立工作文件sy8.wf1及导入数据打开sy8.xls文件,运用前面学过的方法,在EViews新建一个工作文件sy8.wf1,把sy8.xls的数据导入到EViews,并根据得到人均消费(consp)和人均GDP(gdpp)两个序列,分别计算对应的自然对数,即lnc=log(consp)、lngdp=log(gdpp)。
(二)、分别检验序列lnc和lngdp的单整阶数。
运用图示法观察序列的时间路径图,如图8-1所示。
可见,lnc和lngdp都随时间不断上升,表明两者都是非平稳的。
(再运用自相关函数法,判断lnc 的平稳性。
打开lnc 序列的窗口,点击view\Correlogram ,设定滞后阶数为12,可得样本自相关系数图,操作和结果分别如图8-2和图8-3所示。
可见,lnc 是非平稳的。
再分析lnc 的一阶差分是否平稳。
在自相关函数图中,设定显示序列的一阶差分(1st differenc )后,再观察其样本自相关函数图,设定和结果如图8-4和图8-5所示。
可见,lnc 取一阶差分后就达到平稳,因此,lnc 是一阶单整序列,即I(1)序列。
如果采用单位根检验,结果相同。
同理,也可检验得到lngdp 序列是I(1)序列。
(三)运用Engle-Granger 方法(即EG 检验)检验consp 与gdpp 的协整关系。
第一章1、什么是计量经济学?计量经济学方法与一般经济学方法有什么区别?解答计量经济学是经济学的一个分支学科,以揭示经济活动中客观存在的经济关系为主要内容,是由经济理论、统计学、数学三者结合而成的交叉性学科。
计量经济学方法揭示经济活动中具有因果关系的各因素间的定量关系,它用随机性的数学方程加以描述;而一般经济数学方法揭示经济活动中各因素间的理论关系,更多的用确定性的数学方程加以描述。
2、计量经济学的研究对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?解答计量经济学的研究对象是经济现象,主要研究经济现象中的具体数量规律,换言之,计量经济学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究。
计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用,即应用计量经济学。
无论理论计量经济学还是应用计量经济学,都包括理论、方法和数据三要素。
计量经济学模型研究的经济关系有两个基本特征:一是随机关系,二是因果关系。
3、为什么说计量经济学在当代经济学科中占据重要地位?当代计量经济学发展的基本特征与动向是什么?解答计量经济学子20世纪20年代末30年代初形成以来,无论在技术方法上还是在应用方面发展都十分迅速,尤其是经过20世纪50年代的发展阶段和20世纪60年代的扩张阶段,计量经济学在经济学科中占据了重要的地位,主要表现在以下几点。
第一,在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程中最具有权威性的一部分。
第二,1969-2003诺贝尔经济学奖的53位获奖者中有10位于研究和应用计量经济学有关,居经济学各分支学科之首。
除此之外,绝大多数诺贝尔经济学奖获得者,即使其主要贡献不在计量经济学领域,但在他们的研究中都普遍的应用了计量经济学方法。
著名经济学家、诺贝尔经济学奖获得者萨缪尔森曾说过:“第二次世界大战后的经济学是计量经济学的时代。
实验八 模型设定偏误问题
:何健华 学号:3 班级:13金融数学2班
一 实验目的:
掌握模型设定偏误问题的估计与应用,熟悉 EViews 的基本操作。
二 实验要求:
应用教材 P183 例子 5.3.1 的案例,利用RESET 检验检验模型设定偏误问题;应用教材 P185 例子 5.3.2 的案例,利用Box-Cox 变换比较线性模型与双对数线性模型的优劣。
三 实验原理:
普通最小二乘法、阿尔蒙法、格兰杰因果关系检验、DW 检验。
四 预备知识:
普通最小二乘法,F 检验,Box -Cox 变换。
五 实验步骤
一、下表列出了中国某年按行业分的全部制造业国有企业及规模以上制造业非)
确设定的模型,将如何检验哪一个模型设定更正确? i i i i L K Y μβββ+++=210
1.建立工作工作文件并录入数据,得到图1.1
图1.1
2.采用RESET 检验来检验模型的设定偏误 2.1对于原幂函数形式的模型,变换成双对数模型 0lnY alnK lnL ββμ=+++
采用OLS 进行估计,估计结果如图1.2。
图1.2
在图1.2窗口选择“Views\Stability Test\Ramsey RESET Test...”,在出现的RESET Specification窗口的Number of fitted terms 栏输入“1”,点击“OK”,得到检验结果如图1.3所示。
图1.3
由F统计量的伴随概率知,在5%的显著性水平下,不拒绝原模型没有设定偏误的假设。
2.2采用OLS对线性模型进行估计,估计结果如图1.4。
图1.4
同样地,选择“Views\Stability Test\Ramsey RESET Test”,在新出现的对话框中输入“1”,得如图1.5所示的RESET检验结果。
图1.5
首先,尽管K与L的参数估计值的t统计量在5%的显著性水平下都是显著的,但拟合优度比原幂函数的模型低。
由F统计量的伴随概率知,在5%的显著性水平下,拒绝原模型没有设定偏误的假设。
可见,相比较而言,线性模型确有设定偏误,而原幂函数模型没有设定偏误问题。
二、通过Box-Cox变换检验中国居民总量消费函数的建立中,原线性模型
β+
β
μ
Y
=X
+
与双对数线性模型哪一个最优?
1
表2.6.3 中国居民总量消费支出与收入资料
单位:亿元年份GDP CONS CPI TAX GDPC X Y 19783605.6 1759.1 46.21519.28 7802.5 6678.83806.7 19794092.6 2011.5 47.07537.828694.2 7551.64273.2 19804592.9 2331.2 50.62571.70 9073.7 7944.24605.5 19815008.8 2627.9 51.90629.899651.8 8438.05063.9 19825590.0 2902.9 52.95700.02 10557.3 9235.25482.4 19836216.2 3231.1 54.00775.5911510.8 10074.65983.2 19847362.7 3742.0 55.47947.35 13272.8 11565.06745.7 19859076.7 4687.4 60.652040.79 14966.8 11601.77729.2 198610508.5 5302.1 64.572090.37 16273.7 13036.58210.9 198712277.4 6126.1 69.302140.36 17716.3 14627.78840.0 198815388.6 7868.1 82.302390.47 18698.7 15794.09560.5 198917311.3 8812.6 97.002727.40 17847.4 15035.59085.5 199019347.8 9450.9 100.002821.86 19347.8 16525.99450.9 199122577.4 10730.6 103.422990.17 21830.9 18939.610375.8 199227565.2 13000.1 110.033296.91 25053.0 22056.511815.3 199336938.1 16412.1 126.204255.30 29269.1 25897.313004.7 199450217.4 21844.2 156.655126.88 32056.2 28783.413944.2 199563216.9 28369.7 183.416038.04 34467.5 31175.415467.9 199674163.6 33955.9 198.666909.82 37331.9 33853.717092.5 199781658.5 36921.5 204.218234.04 39988.5 35956.218080.6 199886531.6 39229.3 202.599262.80 42713.1 38140.919364.1 199991125.0 41920.4 199.7210682.58 45625.8 40277.020989.3 200098749.0 45854.6 200.5512581.51 49238.0 42964.622863.9 2001108972.4 49213.2 201.9415301.38 53962.5 46385.424370.1 2002120350.3 52571.3 200.3217636.45 60078.0 51274.026243.2 2003136398.8 56834.4 202.7320017.31 67282.2 57408.128035.0 2004160280.4 63833.5 210.6324165.68 76096.3 64623.130306.2 2005188692.1 71217.5 214.4228778.54 88002.1 74580.433214.4 2006221170.5 80120.5 217.6534809.72 101616.3 85623.136811.2
1.建立工作工作文件并录入数据,得到图
2.1
图2.1
2.采用Box-Cox 变换检验原线性模型与双对数线性模型的优劣 2.1对原线性模型采用OLS 进行估计,估计结果如图2.2。
图2.2
由图中2.2的数据,可得:
ˆ
Y=2091.295+0.437527X (6.242914)
(47.05950) 21R =0.987955F=2214.596RSS =30259014
,,
2.2对双数线性模型采用OLS 进行估计,估计结果如图2.3。
图2.3
由图2.3的数据,可得:
ˆlnY=0.587306+0.880017lnX
(4.112865) (61.89235)
22R =0.993001F=3830.664RSS =0.087076,,
虽然双对数线性模型的可决系数大于原线性模型,残差平方和小于原线性模型,但不能就此认为双对数线性模型“优于”线性模型。
2.3采用Box-Cox 变换后再进行比较
在主界面菜单选择“Quick\Generate Series ”,在出现的“Generate Series by Equation ”窗口中输入“LY=LOG(Y)”,点击OK 按钮即可生成Y 的对数序列LY 。
然后在主页的命令编辑区域中输入“scalar Y1=exp(sum(LY)/29)”,如图2.4,点回车键生成一个标量Y1。
图2.4
选择“Quick\Generate Series ”,在出现的“Generate Series by Equation ”窗口中输入“Y2=Y/Y1”,点击OK 按钮即可生成Y 的对数序列Y2。
作Y2关于X 的线性OLS 回归得如图2.5所示结果。
图2.5
由图2.5的回归结果可得:
2
ˆY =0.172787+0.0000361X (6.242914)(47.05950)
23R =0.987955F=2214.596RSS =0.206559,,
作Y2关于X 的双对数线性OLS 回归得如图2.6所示结果。
图2.6
由图2.6的回归结果可得:
2ˆlnY =-8.813930+0.880017lnX (-61.72335)(61.89235) 24R =0.993001F=3830.664RSS =0.087076,,
于是
34RSS 129ln ln 2.372212.532RSS 2n =⨯= 该值大于在5%显著性水平下自由度为1的2χ分布的临界值3.841,因此可判断双对数模型确实“优于”原线性模型。