常微分方程初值问题的线性多步法基本公式的研究
- 格式:pdf
- 大小:1.16 MB
- 文档页数:52
摘要本文主要研究线性三步法的性质及其应用问题,在已有线性多步法基本公式的及线性二步法的基础上,本文又推导出了一个线性三步法公式,并对其进行性质分析验证。
对构造出的线性三步法公式进行相容性、稳定性、收敛性的判断。
对于一些简单而典型的微分方程模型,是可以设法求出其解析解的,并有理论上的结果可利用。
但在数学模型中遇到的常微分方程初值问题模型,通常很难直接求出结果,甚至根本无法求出其解析解,而只能求其近似解。
因此,研究其数值方法,以便快速求得数值解有其重大意义。
对此,本文对常微分方程初值问题模型用线性三步法进行了计算机实现。
本文工作如下:首先,介绍线性多步法公式的基本概念、构造方法、误差分析。
然后,在已有的线性多步法公式特别是线性二步法的基础上,推导出线性三步法的公式,并对其性质进行分析判断。
最后,对构造的线性三步法公式进行应用,主要分析出口服药物在体内吸收变化的情况,用Matlab程序对饮食和非饮食两种情况进行作图比较。
关键词:线性三步法,常微分方程数值解,初值问题,口服药AbstractThis paper studies the nature of the linear three-step method and its application,the existing basic formula of linear multi-step and linear two-step method,the paper has derived a linear three-step formula,and verify the nature of their conduct.Of the constructed linear three-step formula for compatibility,stability,convergence of the judge.For some simple and typical differential equation model,is to derive its analytical solution,and the results are theoretically available.However,mathematical models encountered in the ODEs model,the results are usually difficult to acquire,or even impossible to derive its analytical solution,but can only seek its approximate solution. Therefore,to study the numerical method to quickly obtain the numerical solution to be of significance.In this regard,this paper model of Ordinary Differential Equation of linear three-step method using a computer to achieve.This works as follows:First,the introduction of linear multi-step formula the basic concepts,construction methods,error analysis.Then,in the existing formula,especially linear multi-step linear two-step method based on the derived formula of linear three-step method,and the nature of its judgments.Finally,structural formula of linear three-step application,the main export services of the in vivo absorption of changing circumstances,using Matlab program on food and non food plot comparison of two situations.Key words:Linear three-step method,Numerical Solution of Ordinary Differential Equations,Initial Value Problem,Oral目录第一章绪论 (1)第二章线性多步法的基本理论 (3)2.1常微分方程的数值解法 (3)2.2线性三步法的构造 (4)第三章线性三步法相容性、稳定性、收敛性的研究 (7)3.1相容性 (7)3.2稳定性 (7)3.3收敛性 (8)第四章口服药物在体内的变化 (10)4.1问题的基本概述 (10)4.2建立口服药物的吸收模型 (11)4.2.1问题的提出 (11)4.2.2模型的假设 (11)4.2.3模型的符号及意义 (12)4.2.4应用线性三步法求解 (12)第五章结论与展望 (16)5.1结论 (16)5.2进一步展望 (16)参考文献 (17)致谢 (18)附录 (19)声明 (22)第一章绪论自然界和工程技术中的很多现象,例如自动控制系统的运行、电力系统的运行、飞行器的运动、化学反应的过程、生态平衡的某些问题等,都可以抽象成为一个常微分方程初值问题。
常微分方程数值解的多步法。
从概念上讲,一种数值方法是从一个初始点开始的,然后在时间上向前迈出一小步,以找到下一个求解点。
以下过程绘制解决方案。
单步方法(例如欧拉方法)仅参考前一点及其导数来确定当前值。
诸如Runge-Kutta之类的方法采取了一些中间步骤(例如,半步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步方法试图通过保留和使用先前步骤的信息而不是丢弃信息来提高效率。
因此,多步法是指前几个点和导数值。
在多步法的情况下,使用先前点和导数值的线性组合。
常微分方程数值解的多步法。
从概念上讲,一种数值方法是从一个初始点开始的,然后在时间上向前迈出一小步,以找到下一个求解点。
以下过程绘制解决方案。
单步方法(例如欧拉方法)仅参考前一点及其导数来确定当前值。
诸如Runge-Kutta之类的方法采取了一些中间步骤(例如,半步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步方法试图通过保留和使用先前步骤的信息而不是丢弃信息来提高效率。
因此,多步法是指前几个点和导数值。
在多步法的情况下,使用先前点和导数值的线性组合。
具体定义常微分方程的数值方法近似地解决了形式初值的问题结果是离散时间ti处y(t)的近似值:其中h是时间步长,而i是整数。
多步方法使用上一个S步骤的信息来计算下一个值。
特别地,多步方法使用yi和f(ti,yi)来计算当前步骤所需的y值。
因此,多步方法是一种具有以下形式的方法:确定系数ai和bi的方法。
该方法的设计者选择系数来平衡对实际解决方案的需求,从而获得一种易于使用的方法。
通常,许多系数为零以简化方法。
可以区分显式和隐式方法。
如果bi = 0,则此方法称为“显式”,因为此公式可以直接计算yn + s。
如果bi≠0,则此方法称为“隐式”,因为yn + s的值取决于f(tn + s,yn + s),并且必须为yn + s。
迭代方法(例如牛顿法)通常用于求解隐式公式。
5 结论 (54)致谢 (55)参考文献 (56)附录 (59)1 绪论解常微分方程在很多学科领域内都有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。
这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。
但大部分的常微分方程其真解通常难以通过解析的方法来获得,至今有许多类型的微分方程还不能给出解的解析表达式,一般只能用数值的方法进行计算。
有关这一问题的研究早在十八世纪就已经开始了,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具,从而能使人们认识解的种种性质及其数值特征。
应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。
对于常微分方程初值问题的数值计算方法,许多学者已经做了大量的工作。
Dahlquist[1],J.C. Butcher[2],P. Henrici[3],和C.W. Gear[4]对于定义在有限区间上的情形作了比较详细的讨论,对于无界区间上的情形没有涉及。
但是文献[5] [6] [7]讨论了无界区间上常微分方程初值问题数值解的稳定性和收敛性。
本章主要介绍了常微分方程初值问题的研究状况以及本文将要讨论的问题。
1768年,Euler提出了关于常微分方程初值问题的方法,1840年,Cauchy第一次对初值问题进行了仔细的分析,早期的常微分方程数值解的问题来源于天体力学。
在1846年,当Adams还是一个学生的时候,和Le Verrier一起根据天王星轨道中出现的已知位置,预测了它下一次出现的位置。
1883年,Adams提出了Adams-Bashforth和Adams-Moulton方法。
Runge、Heun和Kutta提出Runge-Kutta 方法。
二十世纪五十年代,Dahlquist[8][9]建立了常微分方程数值解法的稳定性理论,线性多步法是常微分方程初值问题的一种数值方法。
常微分方程初值问题RK法和多步法科J教文}化●常微分方程初值问题科法和多步法李忠杰(山东商务职业学院,山东烟台264670)摘要:常微分方程的差分方法分为单步法和多步法,RK方法是最常用的单步法,而Adams方法是常用的多步法之一,本文探讨了求解常微分方程初值问题单步法和多步法,从运算量,计算精度两个方面分析和比较了同阶RK法和多步法.关键词:RK法;多步法;运算量;精度1概述求解常微分方程初值问题的方法分为单步法和多步法,单步法主要有欧拉法和Runge—Kutta法,多步法主要有Adams法和Milne法,本文仅以最常用的Runge—Kutta法和Adams法分别作为单步法和多步法的例子,对两种方法进行分析比较.2方法介绍2.1RK法Euler法是最简单的一种求解常微分方程初值问题的数值方法,但其局部截断误差仅为O(h),是一阶方法,为了达到更高的精度,我们构造了RK法.通过构造高阶单步法来提高精度,而较高的精度意味着计算结果更加精确,误差随着的减小迅速减小,考虑常微分方程:Y=f(x,),y(0)=Y o,(2lj利用Taylor级数法构造(,y,h),使)'()=y()+,y(),^)+)中的局部截断误差尽可能高,最常用的就是四级四阶RK 法,其局部截断误差为O(h).单步法的一般形式是HY+hg(,,h)(n=0,1,2,?一,N一1)(2.2)这是因为单步法在计算时都只用到前一步的值,为了提高精度,需要重瓤计算多个点处的函数值(例如RK法),计算量较大.多步法的基本思想是如何通过较多地利用前面的已知信息(如Y,y一,Y…)来构造高精度的算法计算Y.四级四阶RK的常用基本格式有…y+【=Th(clKl十c2K2十f,+c4K4)K=f(x,Y)Ke=,(+ash,Y+b2】hKI)(2.3)1,23一f(x+a3h,y+b31hK14-2hK2)K4=fIx+d4h,+shKt+2hKz十3hX31通过取定不同的1和a会得到y+1=y+;(K1+2K2+2K3+K4)Kf(xK2,t十K,(j+K4,t+和hK.t)(2.4)hKhK)=++√2+(2一+1l=f(,):::曼hk"1+(1一./2x,~--1c:厂(+,,+——一—))k:,y一7-+mI以及=yH+h(O17476028KE0.55148053K2+017118478K:J=,(,)04矗O觚),2.6,=,+0.455737254hv.+0.29697~60^O15卵5966艋j=+by.to.2181oo38h~3.0509646470tK2十383286432hff3) 其中,式(24)是最为常用的经典四级四阶RK格式,式(25)称为Gill格式22多步法常用的多步法主要有Adams法和Milne法,本文仅以Adams法为例介绍多步法,其中Adams法又包括显式Adams法和隐式Adams法.显式Adams法:Adams~Bashforth公式:y=+△=_其中.出_卜1):ds,m:,公式(2_7)又称为Adams外插公为方便汁算,改用函数值表示后差:霉.c从而(2.7)式可以写成=)'+^∑(28)其中i=o&_(_km,j=0,l,2,…,足.困(27)或(2.8)是显式公式,所以又称它们为显式Adams公式,易见显式Adams公式(2.7)或(2.8]是线性(+1)步公式.常刚的四阶盟式Adams公式为日+=+(55一59一十37A一一9.)(29)22.2隐式Adams法+△+(2.10)其中,,_(-_Im=0,.',.称(210)为Adams—Mouhon公式.NNN~-顿向后插值多项基点为,…,,而积分区问为f,+』,故上式又称为Adams内插公式,该式为隐式公式,故又称为隐式Adams公式. 闪V=喜c-¨1,故(2.1O)式可改写成+一+∑(2川)~.-ee,一五kmJ_U,1,2,…,常用的四阶隐式Adams公式=+(+1+)(2-12)这是一个关于+的隐式方程,在计算中,需要将式(2.12)写成显式格式,但一些方程难以求出其砬式格式,这就需要将四阶最式Adams法和四阶隐式Adams法结合起来,用显式公式(2.9)作为预测,然后用隐式公式(2.I2)作校正,构造Adams 预测一校正公武fb(55L-59,r甲3z,广2)l+=+(9+(州+)+19L5一+吨)式(2l3)为四阶公式,式中的初始值除yo已给定,y,y,y常用四阶RK法计算.3运算量及精度比较3.1运算量比较叫级RK法每前进一步需要计算四个函数值,对N级RK法,每计算一步,函数f需要计算N 次.闪此,对给定的N,我们总是希构造阶数最高的方法,记P(Ⅳ,是N级RK法所能达到的最高的阶数,已经得到下面的结:fN,当Ⅳ=l,2,3,4H,jP(Ⅳ)={N1,当=5,6,7时lN-2,当.v=8,州由此可见,当N25时,pON)<N,从而四级四阶RK法是较受欢迎的方法.对于显式Adams法, 已知Yn~3,一:,yn和Y,把它们代入到式(2_9)右端,就可以直接得到+,因而是一个四级四阶的方法,应用公式时需要提供主yo,y.,Y:和v=;4/b-N 始值,通常也是由经典RK公式提供.同样,对于四阶隐式Adams法.式(2.12)是一个三级四阶的,应用该公式需要提供3个初始值y0,Y和y2,通常由经典RK公式提供.32精度比较3.2.1RK法精度对四阶RK法,川测试方程分析其精度.Y=f(x,y)=0y(1)假设Y是已知的,y.的精确值为:(")=8(32)Tavh>r展开得:m)一刍寺{㈤+ll,●3jJ另一方面,将式(3.2){Jd.fi.(3.1)得:)f+ah+2~h)+寺^)+未(.){(34)比较上式与(3.3),表明四阶RK法精度的阶为4,一步迭代的误差与h成比例,即局部截断误差为O(h).3.2.2多步法精度式Adams法的局部截断误差是=l1出(=(一j"J1"(贝0,=+fo'(-1/+~--T—l}+()=^a}+1Y(∈)xn一<∈<(下转309页)一199—工I程I科I技浅谈地下室的防水赵春明郝力(哈尔滨大都会房地产开发有限公司,黑龙江哈尔滨150000)摘要:地下防水工程是地下工程建设中的一个重要组成部分,针对地下室的防水措施进行了论述.关键词:地下室;防水;措施地下防水工程是地下工程建设中的一个重要组成部分,地下室防水采用混凝土结构自防水与外墙全粘贴SBS高聚物改性沥青卷材防水相结合的施工技术,这里介绍防水混凝土,卷材防水及穿墙管道,施工缝的施工.工程是江北某高层地下室的防水,防水计划采用刚性防水和柔性防水相结合的防水体系.底板和外墙采用混凝土结构自防水与SBS高聚物改性沥青卷材防水相结合,混凝土抗渗品级为S6,柔性防水为4mm厚SBS高聚物改性沥青防水卷材.穿墙的管件防水采用满焊止水环及钢板封口,施工缝处的防水采用钢板板止水带和橡胶止水条.地下室防水混凝土施工,混凝土使用商品混凝土抗渗品级计划为s6,外加剂采用硅质密实剂防水剂,地下室底板混凝土属于大体积大面积施工,混凝土浇筑时应采用"分区定点,一个坡度,循序推进,一次到底"的浇筑工艺.浇筑时先在一个部位进行,直至达到设计标高,混凝土形成扇形向前流动,然后在其坡面上连续浇筑,循序推进.该要领能较好顺应泵送工艺, 制止通常拆卸运送混凝土管道,前进泵送屈从, 简化混凝土的泌水处理,并保证了上下层混凝土不超过初凝时间.墙体混凝土,浇筑时要严酷控制分层厚度,每次浇筑厚度应控在0.5m左右,每次浇筑墙体长度不大于30m,浇筑时应保证一连性.混凝土坍落度的控制,本工程采用商品混凝土,要严格控制混凝土的和易性,采用低坍落度混凝土,混凝土坍落度现场实测值控制在(120±20)ram;当混凝土运到现场后出现离析, 必须退还搅拌站进行二次搅拌,混凝土浇筑时要保证合理的分段分层施工,分层厚度为0.3m,分层的接头时间间隔不超过2h,施工中交接的临时结合的竖向缝,要互相错开.混凝土振捣:根据泵送浇筑时自然形成一个坡度,防水混凝土施工必须采用高频机械振捣,严格控制振捣的间距和时间.每一振点的振捣时间,应将混凝土捣实至表面呈现浮浆,不冒气泡和不再沉落为准,振捣时间为20~30s,避免漏振,少振和超振.混凝土的表面处理;大体积泵送混凝土,排除泌水和浮浆后,表面仍有较厚的水泥浆,在浇完4~5h后,要用长括尺括平,在初凝前用滚筒来回碾压数遍,待接近终凝前,用木抹子再打磨一遍,使收水裂缝闭合.混凝土养护; 大体积混凝土的内外温差大,必须做好养护工作.本工程采用浇水养护并覆盖塑料薄膜,防止混凝土水分蒸发和表面脱水而产生干缩裂缝, 养护时间不少于14d.SBS高聚物改性沥青防水卷材,地下室卷材防水层的施工要领基础上有两种:外防外贴法和外防内贴法.本工程接纳外防外贴法,即待墙体围护结构施工完成后,将立面卷材防水层直接铺贴在围护结构的外表面,最后采取保护措施的方法.施工前要将下层整理清洁,涂刷下层处理剂时,下层应平整牢固,清洁干燥,下层处理剂应与卷材的材性相容,涂刷时要匀称同等.下层处理干燥后,先按计划要求对有特别部位做防水附加层,如阴阳角处应做成圆弧或钝角,并贴上1层SBS卷材做附加层,宽度不小于500mm,卷材铺贴采用全粘贴热熔法施工, 铺贴卷材时应先铺贴平面,后铺贴立面,交接处应交织搭接,从平面折向立面时,应暂时贴附在该墙上或模板上.围护结构完成后,铺贴立面墙体卷材之前,应先将暂时性掩护墙区段内各层卷材的接搓揭开,并将其外貌整理清洁.如卷材有局部破坏,应进行修补后方可继续施工.铺贴卷材时必须满粘法施工.卷材防水层经检查及格后,应实时做好掩护层.底板卷材防水层的细石混凝土保厚度不应小于50ram,侧墙卷材防水层接纳2O厚l:3 的水泥砂浆掩护层.SBS高聚物改性沥青防水卷材应具有良好的耐水性,历久性,耐刺穿性和耐腐性.防水层的厚度不应小于3mm,单层使用时,厚度不应小于4mm;双层使用时,总厚度不小于6mm,地下室底板卷材长边搭接宽度不小于100mm,短边搭接宽度不小于150ram;同一层相邻两幅卷材铺贴时,短边搭接处应错开150mm以上.上下两层卷材禁垂直铺贴,且搭接缝宽应错开1/3 幅宽以上;地下室侧墙铺贴双层卷材接长时,应采用交叉法接缝,上层卷材接缝位置盖过下层150ram;在立面与平面的转角处,卷材的接缝应留在平面上,距立面不应小于600mm.穿墙管道,当结构变形或管道伸缩量较小时,穿墙管道可接纳直接埋人混凝土内的牢固式防水法,主管应满焊止水环.当结构变形或管科道伸缩量较大或有调换要求时,应采用套管式防水法,套管与止水环应满焊.当穿墙管线较多且密时,宜相对会集,接纳穿墙盒法,盒的封口钢板与墙上的预埋角钢焊严,并从钢板上的浇筑孔注人密封质料.各种穿墙管道,预埋件等位置要留置正确,穿墙管道和预埋件应在浇筑混凝土前预埋.穿墙管道与内墙角,凹凸部位的距离不小于250ram.金属止水环应与主管满焊密实,采用套管式穿墙管防水结构时,翼环与套管应满焊密实,并在施工前将套管内外表面清理干净.施工缝,底板与外墙的水平施工缝,应在缝处设置一圈宽200mm的钢板止水带.外墙间的垂直施工缝,可在缝处设置一竖直同墙高的宽200mm钢板止水带.防水混凝土施工应保证连续浇筑,尽量少留施工缝.当必须留置时,墙体水平施工缝不应留在剪力与弯矩最大处或底板与侧墙的交接处,应留在高出底板表面不小于300mm高的墙体上;当墙体有预留孔洞时,施工缝距孔洞边缘不小于300mm.水平施工缝浇筑混凝土时,应将其表面的浮浆和杂物扫除,先铺净浆,再铺30—50mm厚的l:1水泥砂浆或涂刷混凝土界面处理剂,并及时浇筑混凝土.垂直施工缝浇筑混凝土时,应将其表面清理干净,涂刷混凝土界面处理剂,并实时浇筑混凝土.施工缝采用遇水膨胀橡胶腻子止水条时,要将止水条牢固地安放在缝表面预留槽内.地下室防水工程在施工缝,穿墙构件等易渗点部位的施工质量,是关系到地下室防水质量的关键,必须制定周密的施工方案和采取切实有效的施工措施.特殊部位重点设防,施工时着力控制好每一环节,精心组织施工,在施工中进一步去完善就能达到预期要求,确保防水施工(上接199页)故,显式Adams法的局部截澎差的阶为矿).式(29)的局莉描毫塞为●C1RH=考+D(),利用牛顿后插值多项式的余项表达式,可得隐式Adams公式的局部截断误差的阶为D(^),因ll~(Zl2)的局部截断误差的阶为O(h),对照显式公式的局部截断误差阶为D(矿),可见同样步隐式公式较之显式公式更为精确,其局部截断误差阶高一阶.四阶四阶RK法的局部截断误差为O(h),而四级四阶显式Adams法的局部截断误差也为为01,这同三级四阶隐式Adams法的精度是一样的.由此可见,相同精度条件下,隐式Adams法的步数更少—些.参考文献【l】任玉杰.数值分析及其MA TLAB实现{北京: 高等教育出版社'2Oo73.闭戴嘉尊,邱建贤.微分方程数值解法南京:东南大学出版社20o22【3】袁慰平等计算方法与实习南京:东南大学出版毒±00o5'7.【4】李瑞遗何志庆等缀分方程数值方法呻上海: 华东理工大学~&2oo5.一309—。