大连理工大学 矩阵与数值分析 第2节线性多步法20160306
- 格式:pdf
- 大小:467.25 KB
- 文档页数:37
2010级工科硕士研究生《矩阵与数值分析》课程数值实验题目 一、设2211N N j S j ==−∑,分别编制从小到大和从大到小的顺序程序计算 100100001000000,,S S S ,并指出有效位数。
二、解线性方程组1.分别Jacobi 迭代法和Gauss ‐Seidel 迭代法求解线性方程组12342100112100,0121000120x x x x −−⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠ 迭代法计算停止的条件为:6)()1(3110max −+≤≤<−k j k j j x x .2. 用Gauss 列主元消去法、QR 方法求解如下方程组:12341212425327.2235113230x x x x ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟−⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟−−−⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠ 三、非线性方程的迭代解法1.用Newton 迭代法求方程()22cos 60x x f x e x −=++−= 的根,计算停止的条件为:6110−+<−k k x x ;2.利用Newton 迭代法求多项式 43210.565.48 2.795.954=10x x x x −+−+的所有实零点,注意重根的问题。
四、数值积分分别用复化梯形公式和Romberg 公式计算积分821dx x∫要求误差不超过510−,并给出节点个数。
五、插值与逼近1.给定[]1,1−上的函数()22511xx f +=,请做如下的插值逼近: ⑴ 构造等距节点分别取5=n ,8=n ,10=n 的Lagrange 插值多项式;⑵ 构造分段线性取10=n 的Lagrange 插值多项式;⑶取Chebyshev 多项式()()x n x T n arccos cos ⋅=的零点: πnk x k 212cos−=,n k ,,1"= 作插值节点构造10=n 的插值多项式 ()x f 和上述的插值多项式均要求画出曲线图形(用不同的线型或颜色表示不同的曲线)。
大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2005 年 12 月 12 日 试卷共 7 页一二三四五 六 七 总分 标准分 得 分装 一、填空(共30分,每空1.5分)(1)误差的来源主要有 、 、 、 .(2)要使 7459666.760=的近似值a 的相对误差限不超过310-,应至少取 位有效数字, 此时的近似值a = .订 (3)设⎪⎪⎭⎫⎝⎛--=4224A , 则1A = , 2A = , ∞A = , F A = ,谱半径)(A ρ= , 2-条件数)(2A cond = , 奇异值为 .线 (4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=-]1,0,1[f ,=-]3,1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:,其收敛阶 . (7)计算u u 5-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 . 为使计算保持绝对稳定性, 步长h 的取值范围 .二、(12分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解,并求解⎪⎪⎪⎭⎫ ⎝⎛=1085Ax .三、(6分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=622292221A 的QR 分解(Q 可表示为两个矩阵的乘积).四、(12分)根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则Jacobi 法和G-S 法均收敛.五、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数.27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .六、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法,1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.七、(18分)求]1,1[-上以1)(≡x ρ为权函数的标准正交多项式系)(0x ψ, )(1x ψ, )(2x ψ, 并由此求3x ])1,1[(-∈x 的二次最佳平方逼近多项式, 构造Gauss 型求积公式⎰-+≈111100)()()(x f A x f A dx x f , 并验证其代数精度.大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2006 年 12 月 11 日 试卷共 8 页一二三四五 六 七 八 总分 标准分 得 分装订 一、填空(共30分,每空2分)线 (1)误差的来源主要有 .(2)按四舍五入的原则,取 69041575.422= 具有四位有效数字的近似值 a = ,则绝对误差界为 ,相对误差界为 .(3)矩阵算子范数M A ||||和谱半径)(A ρ的关系为: ,和 .(4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=]1,0[f ,=-]1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:.(7)使用Aitken 加速迭代格式)(1-=k k x x ϕ得到的Steffensen 迭代格式为:,对幂法数列}{k m 的加速公式为:.(8)1+n 点的Newton-Cotes 求积公式∑==nk k k n x f A f I 0)()(的最高代数精度为.(9)计算u u 7-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 ,为使计算保持绝对稳定性, 步长h 的取值范围 .二、(10分) 设⎪⎪⎭⎫ ⎝⎛--=4224A , 计算1A ,2A ,∞A ,F A , 谱半径)(A ρ, 2-条件数)(2A cond , 和奇异值.三、(10分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解.四、(4分)求Householder 变换矩阵将向量⎪⎪⎪⎭⎫ ⎝⎛=221x 化为向量⎪⎪⎪⎭⎫ ⎝⎛=003y .五、(12分)写出解线性方程组的Jacobi 法,G-S 法和超松弛(SOR )法的矩阵表示形式,并根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则超松弛(SOR )法当松弛因子]1,0(∈ω时收敛.六、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数. 27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .七、(12分)证明区间],[b a 上关于权函数)(x ρ的Gauss 型求积公式∑==nk k k n x f A f I 0)()(中的系数⎰=bak k dx x l x A )()(ρ,其中)(x l k 为关于求积节点n x x x ,,10的n 次Lagrange 插值基函数,n k ,1,0=. 另求]1,1[-上以1)(≡x ρ为权函数的二次正交多项式)(2x ψ, 并由此构造Gauss型求积公式⎰-+≈111100)()()(x f A x f A dx x f .八、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法, 1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一 二 三 四 五 六 七 八 九 十 总分标准分 42 8 15 15 15 5 / / / / 100 得 分一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dxe x ⎰-12求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。
第二章 矩阵变换和计算一、内容提要本章以矩阵的各种分解变换为主要内容,介绍数值线性代数中的两个基本问题:线性方程组的求解和特征系统的计算,属于算法中的直接法。
基本思想为将计算复杂的一般矩阵分解为较容易计算的三角形矩阵. 要求掌握Gauss (列主元)消去法、矩阵的(带列主元的)LU 分解、平方根法、追赶法、条件数与误差分析、QR 分解、Shur 分解、Jordan 分解和奇异值分解.(一) 矩阵的三角分解及其应用 1.矩阵的三角分解及其应用考虑一个n 阶线性方程组b Ax =的求解,当系数矩阵具有如下三种特殊形状:对角矩阵D ,下三角矩阵L 和上三角矩阵U ,这时方程的求解将会变得简单. ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n d dd D21, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nnn n l l l l l l L21222111, ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n u u u u u u U22212111. 对于b Dx =,可得解为i i i d b x /=,n i ,,2,1 =.对于b Lx =,可得解为1111/l b x =,ii i k k iki i l x lb x /)(11∑-=-=,n i ,,3,2 =.对于b Ux =,可得解为nn n n l b x /=,ii ni k k iki i l x lb x /)(1∑+=-=,1,,2,1 --=n n i .虽然对角矩阵的计算最为简单,但是过于特殊,任意非奇异矩阵并不都能对角化,因此较为普适的方法是对矩阵进行三角分解.1).Gauss 消去法只通过一系列的初等行变换将增广矩阵)|(b A 化成上三角矩阵)|(c U ,然后通过回代求与b Ax =同解的上三角方程组c Ux =的解.其中第k 步消元过程中,在第1-k 步得到的矩阵)1(-k A 的主对角元素)1(-k kka 称为主元.从)1(-k A 的第j 行减去第k 行的倍数)1()1(--=k kkk jkjk a a l (n j k ≤<)称为行乘数(子).2).矩阵A 的LU 分解对于n 阶方阵A ,如果存在n 阶单位下三角矩阵L 和n 阶上三角矩阵U ,使得LU A =, 则称其为矩阵A 的LU 分解,也称为Doolittle 分解.Gauss 消去法对应的矩阵形式即为LU 分解, 其中L 为所有行乘子组成的单位下三角矩阵, U 为Gauss 消去法结束后得到的上三角矩阵. 原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==yUx b Ly .3).矩阵LU 分解的的存在和唯一性如果n 阶矩阵A 的各阶顺序主子式),,2,1(n k k =D 均不为零, 则必有单位下三角矩阵L 和上三角矩阵U ,使得LU A =, 而且L 和U 是唯一存在的.4).Gauss 列主元消去法矩阵每一列主对角元以下(含主对角元)的元素中, 绝对值最大的数称为列主元. 为避免小主元作除数、或0作分母,在消元过程中,每一步都按列选主元的Guass 消去法称为Gauss 列主元消去法.由于选取列主元使得每一个行乘子均为模不超过1的数,因此它避免了出现大的行乘子而引起的有效数字的损失.5).带列主元的LU 分解Gauss 列主元消去法对应的矩阵形式即为带列主元的LU 分解,选主元的过程即为矩阵的行置换. 因此, 对任意n 阶矩阵A ,均存在置换矩阵P 、单位下三角矩阵L 和上三角矩阵U ,使得LU PA =.由于选列主元的方式不唯一, 因此置换矩阵P 也是不唯一的. 原方程组b Ax =两边同时乘以矩阵P 得到Pb PAx =, 再分解为两个三角形方程组⎩⎨⎧==y Ux PbLy .5).平方根法(对称矩阵的Cholesky 分解)对任意n 阶对称正定矩阵A ,均存在下三角矩阵L 使T LL A =,称其为对称正定矩阵A 的Cholesky 分解. 进一步地, 如果规定L 的对角元为正数,则L 是唯一确定的.原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==y x L bLy T .利用矩阵乘法规则和L 的下三角结构可得21112⎪⎪⎭⎫ ⎝⎛-=∑-=j k jkjj jjla l , jj j k jk ik ij ij l l l a l /11⎪⎪⎭⎫⎝⎛-=∑-=, i=j +1, j +2,…,n , j =1,2,…,n . 计算次序为nn n n l l l l l l l ,,,,,,,,,2322212111 .由于jj jk a l ≤,k =1,2,…,j .因此在分解过程中L 的元素的数量级不会增长,故平方根法通常是数值稳定的,不必选主元.6).求解三对角矩阵的追赶法 对于三对角矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=---n nn n n b a c b a c b a c b 11122211A , 它的LU 分解可以得到两个只有两条对角元素非零的三角形矩阵 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--n n n nu d u d u d u l l l 11221132,1111U L . 其中⎪⎪⎩⎪⎪⎨⎧=-====-==--n i c l b u n i u a l b u n i c d i i i i i i i i i ,,3,2,,,3,2,/1,,2,1,1111计算次序是n n u l u l u l u →→→→→→→ 33221. 原方程组b Ax =分解为两个三角形方程组⎩⎨⎧==y Ux b Ly . 计算公式为n i y l b y b y i i i i ,,3,2,,111 =-==-,.1,,2,1,/)(,/1 --=-==+n n i u x c y x u y x i i i i i nn n该计算公式称为求解三对角形方程组的追赶法.当A 严格对角占优时,方程组b Ax =可用追赶法求解, 解存在唯一且数值稳定.7).矩阵的条件数设A 为非奇异矩阵,⋅为矩阵的算子范数,称1)(cond -=A A A 为矩阵A 的条件数.矩阵的条件数是线性方程组b Ax =, 当A 或b 的元素发生微小变化,引起方程组解的变化的定量描述, 因此是刻画矩阵和方程组性态的量. 条件数越大, 矩阵和方程组越为病态, 反之越小为良态.常用的矩阵条件数为∞-条件数: ∞-∞∞=1)(cond AA A ,1-条件数: 1111)(cond -=AAA ,2-条件数: )()()(cond mi n max 2122A A A A AAA HHλλ==-.矩阵的条件数具有如下的性质: (1) 1)(cond ≥A ;(2) )(cond )(cond 1-=A A ;(3) )(cond )(cond A A =α,0≠α,R ∈α;(4) 如果U 为正交矩阵,则1)(cond 2=U ,)(cond )(cond )(cond 222A AU UA ==.一般情况下,系数矩阵和右端项的扰动对解的影响为定理 2.5 设b Ax =,A 为非奇异矩阵,b 为非零向量且A 和b 均有扰动.若A 的扰动δA 非常小,使得11<-A A δ,则)()(cond 1)(cond bδb AδA AA A A xδx +-≤δ.关于近似解的余量与它的相对误差间的关系有定理2.6 设b Ax =,A 为非奇异矩阵,b 为非零向量,则方程组近似解x ~的事后估计式为bx A b A xx x bx A b A ~)cond(~~)cond(1-≤-≤-.其中称x A b ~-为近似解x ~的余量,简称余量。
大连理工大学2017年研究生矩阵与数值分析考试大连理工大学2017年研究生矩阵与数值分析考试考试日期:2017年6月5日一、填空题(50分,每空2分)1.a=0.3000经过四舍五入具有4位有效数字,则,2.已知X=(1,5,12)T,Y=(1,0,a)T,则由X映射到Y的Householder矩阵为:,计算||H||2=,cond2(H)=3.根据3次样条函数的性质(后面-前面=a(x-x0)3),一个求其中的参数b==4.,写出隐式Euler格式:梯形法格式:5.已知A=XXT,其中X为n维列向量,则||A||2=,||A||F=,矩阵序列的极限:=6.A=LU,其解为,写出一步迭代后的改善格式:7.,请问通过幂法与反幂法计算出的特征值分别是,8.,=,=,=,=,=9.是Newton-cotes公式,则=,具有代数精度=10.f(x)=7x7+6x6+…+x,f[20,21,22….,28]=11.,=12.f(0)=1,f(1)=-1,f(2)=1,f(3)=19,请问对该节点进行插值后最高次的系数=还有2空没有回忆出来,但是比上面题目还简单,因此不用担心。
二、,(1)计算LU分解(2)利用LU求逆矩阵(3)写出G-S格式(12分)三、给出,计算该迭代式收敛到某个值,收敛阶(8分)答案:收敛到,且收敛阶为3,因为,,而四、y=ae-bx,利用最小二乘法计算。
(8分)x-1012ye-11ee2数据可能有错,但是不影响计算思路。
五、计算权函数为1,区间[-1,1]的二次正交多项式,并且据此计算的具有三次代数精度求积公式(8分)六、已知线性2步3阶法(14分)(1)写出局部截断误差(必须含有主项)(2)判断收敛性(3)写出绝对稳定区间答:提示:上面公式的与书上的不是同一个,注意计算的时候区分。
大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:交作业日时间:2016 年12 月20日1.1程序:Clear all;n=input('请输入向量的长度n:')for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.2.1程序clear all;x(1)=-10^-15;dx=10^-18;L=2*10^3;for i=1:Ly1(i)=log(1+x(i))/x(i); d=1+x(i);if d == 1y2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;endx=x(1:length(x)-1);plot(x,y1,'r');hold onplot(x,y2);2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。
第3题3.1 程序clear all;A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05;for i=1:length(x);y1(i)=f(A,x(i));y2(i)=(x(i)-2)^9;endfigure(3);plot(x,y1);hold on;plot(x,y2,'r');F.m文件function y=f(A,x) y=A(1);for i=2:length(A); y=x*y+A(i); end;3.2 结果第4题4.1 程序clear all;n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0);for i=1:nA(i,n)=1;endn=length(A);U=A;e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1;U=e0*U;e1=eye(n);for j=i+1:ne1(j,i)=-U(j,i)/U(i,i);endU=e1*U;P{i}=e0;%把变换矩阵存到P中L{i}=e1;e=e1*e0*e;endfor k=1:n-2Ldot{k}=L{k};for i=k+1:n-1Ldot{k}=P{i}*Ldot{k}*P{i};endendLdot{n-1}=L{n-1};LL=eye(n);PP=eye(n);for i=1:n-1PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);b=e*b; %解方程x=zeros(n,1);x(n)=b(n)/U(n,n);for i=n-1:-1:1x(i)=(b(i)-U(i,:)*x)/U(i,i);endX=U^-1*e^-1*eye(n);%计算逆矩阵AN=X';result2{n-4,1}=AN;result1{n-4,1}=x;fprintf('%d:\n',n)fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.06250.0625 1.125 -0.75 -0.5 -0.06250.0625 0.125 1.25 -0.5 -0.06250.0625 0.125 0.25 1.5 -0.0625-0.0625 -0.125 -0.25 -0.5 0.0625n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。
共享知识分享快乐大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:12 交作业日时间:日20 月年2016卑微如蝼蚁、坚强似大象.共享知识分享快乐第1题1.1程序:Clear ;all n=input('请输入向量的长度n:') for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.卑微如蝼蚁、坚强似大象.共享知识分享快乐第2题2.1程序;clear all x(1)=-10^-15;dx=10^-18;L=2*10^3; i=1:L fory1(i)=log(1+x(i))/x(i); d=1+x(i); d == 1ify2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;end x=x(1:length(x)-1););'r'plot(x,y1,on holdplot(x,y2);卑微如蝼蚁、坚强似大象.共享知识分享快乐2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。
第3题3.1 程序;clear all A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05; i=1:length(x);for y1(i)=f(A,x(i)); y2(i)=(x(i)-2)^9;end figure(3);plot(x,y1);;on hold卑微如蝼蚁、坚强似大象.共享知识分享快乐);'r'plot(x,y2,F.m文件y=f(A,x)function y=A(1); i=2:length(A);for y=x*y+A(i);;end3.2 结果第4题卑微如蝼蚁、坚强似大象.共享知识分享快乐4.1 程序;clear all n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0); i=1:n for A(i,n)=1;end n=length(A);U=A; e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1; U=e0*U; e1=eye(n); j=i+1:n fore1(j,i)=-U(j,i)/U(i,i);endU=e1*U;中把变换矩阵存到P P{i}=e0;% L{i}=e1; e=e1*e0*e;endk=1:n-2for Ldot{k}=L{k}; i=k+1:n-1forLdot{k}=P{i}*Ldot{k}*P{i};endend Ldot{n-1}=L{n-1};LL=eye(n);PP=eye(n); i=1:n-1for PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);解方程 %b=e*b;x=zeros(n,1);x(n)=b(n)/U(n,n); i=n-1:-1:1for卑微如蝼蚁、坚强似大象.共享知识分享快乐x(i)=(b(i)-U(i,:)*x)/U(i,i);end计算逆矩阵%X=U^-1*e^-1*eye(n);AN=X'; result2{n-4,1}=AN;result1{n-4,1}=x;,n)'%d:\n'fprintf(fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.0625-0.0625 0.0625 -0.75 1.125 -0.5-0.0625 0.125 0.0625 1.25 -0.5-0.0625 0.1250.25 0.06251.50.0625-0.5-0.25-0.0625 -0.125n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 -0.0625 1.125 0.0625 -0.75 -0.5 -0.5 0.0625 1.125 -0.75 -0.0625 -0.0625 0.0625 0.125 1.25 1.25 -0.0625 -0.5 0.0625 0.125 -0.5-0.0625 0.250.250.0625 0.1251.5 1.5 -0.0625 0.1250.06250.0625 -0.0625 -0.125 -0.25 0.0625 -0.5 -0.0625 -0.125 -0.25 -0.5 -0.0625 -0.75 1.0625 -0.5 -0.0625 -0.875 -0.5 -0.75 1.0625 -0.875 -0.0625 -0.5 0.0625 1.125 -0.5 0.0625 1.125 -0.75 -0.0625 -0.75 1.25 0.125 0.0625 -0.0625 -0.0625 -0.5 -0.5 0.0625 0.125 1.250.25-0.0625 -0.0625 1.50.1250.0625 0.0625 0.250.1251.5-0.0625 -0.125 -0.25 0.0625-0.5 0.0625 -0.0625 -0.125 -0.25-0.5同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。