计算方法-95线性多步法资料
- 格式:ppt
- 大小:838.00 KB
- 文档页数:8
多步法应用于常微分方程的数值解。
从概念上讲,数值方法从初始点开始,然后在时间上向前迈出一小步,以找到下一个求解点。
该过程的下一步是绘制解决方案。
一步法(例如Euler方法)仅引用前一点及其导数来确定当前值。
诸如Runge Kutta之类的方法采取一些中间步骤(例如,半个步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步尝试通过保留和使用先前步骤中的信息而不是丢弃信息来提高效率。
因此,多步法涉及前几个要点和导数。
在多步的情况下,使用先前点和导数的线性组合。
简单的介绍多步法应用于常微分方程的数值解。
从概念上讲,数值方法从初始点开始,然后在时间上向前迈出一小步,以找到下一个求解点。
该过程的下一步是绘制解决方案。
一步法(例如Euler方法)仅引用前一点及其导数来确定当前值。
诸如Runge Kutta之类的方法采取一些中间步骤(例如,半个步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步尝试通过保留和使用先前步骤中的信息而不是丢弃信息来提高效率。
因此,多步法涉及前几个要点和导数。
在多步的情况下,使用先前点和导数的线性组合。
[1-3]具体定义常微分方程的数值方法近似地解决了形式初值问题结果是离散时间的Ti的Y(T)的近似值其中h是时间步长,而I是整数。
Multistep使用上一步中的信息来计算下一个值。
特别地,多步法使用Yi和f(Ti,Yi)来计算所需当前步长的Y值。
因此,多步方法是以下形式的方法:确定系数AI和Bi。
该方法的设计者选择系数平衡了对实际解决方案的需求,以便获得一种易于使用的方法。
通常,许多系数为零以简化该方法。
显式和隐式方法可以区分。
如果Bi = 0,则该方法称为“显式”,因为它可以直接计算yn + s。
如果Bi≠0,则该方法称为“隐式”,因为YN + s的值取决于f(TN + s,yn + s),并且必须为yn + s。
迭代方法(例如牛顿法)通常用于求解隐式公式。
摘要本文主要研究线性三步法的性质及其应用问题,在已有线性多步法基本公式的及线性二步法的基础上,本文又推导出了一个线性三步法公式,并对其进行性质分析验证。
对构造出的线性三步法公式进行相容性、稳定性、收敛性的判断。
对于一些简单而典型的微分方程模型,是可以设法求出其解析解的,并有理论上的结果可利用。
但在数学模型中遇到的常微分方程初值问题模型,通常很难直接求出结果,甚至根本无法求出其解析解,而只能求其近似解。
因此,研究其数值方法,以便快速求得数值解有其重大意义。
对此,本文对常微分方程初值问题模型用线性三步法进行了计算机实现。
本文工作如下:首先,介绍线性多步法公式的基本概念、构造方法、误差分析。
然后,在已有的线性多步法公式特别是线性二步法的基础上,推导出线性三步法的公式,并对其性质进行分析判断。
最后,对构造的线性三步法公式进行应用,主要分析出口服药物在体内吸收变化的情况,用Matlab程序对饮食和非饮食两种情况进行作图比较。
关键词:线性三步法,常微分方程数值解,初值问题,口服药AbstractThis paper studies the nature of the linear three-step method and its application,the existing basic formula of linear multi-step and linear two-step method,the paper has derived a linear three-step formula,and verify the nature of their conduct.Of the constructed linear three-step formula for compatibility,stability,convergence of the judge.For some simple and typical differential equation model,is to derive its analytical solution,and the results are theoretically available.However,mathematical models encountered in the ODEs model,the results are usually difficult to acquire,or even impossible to derive its analytical solution,but can only seek its approximate solution. Therefore,to study the numerical method to quickly obtain the numerical solution to be of significance.In this regard,this paper model of Ordinary Differential Equation of linear three-step method using a computer to achieve.This works as follows:First,the introduction of linear multi-step formula the basic concepts,construction methods,error analysis.Then,in the existing formula,especially linear multi-step linear two-step method based on the derived formula of linear three-step method,and the nature of its judgments.Finally,structural formula of linear three-step application,the main export services of the in vivo absorption of changing circumstances,using Matlab program on food and non food plot comparison of two situations.Key words:Linear three-step method,Numerical Solution of Ordinary Differential Equations,Initial Value Problem,Oral目录第一章绪论 (1)第二章线性多步法的基本理论 (3)2.1常微分方程的数值解法 (3)2.2线性三步法的构造 (4)第三章线性三步法相容性、稳定性、收敛性的研究 (7)3.1相容性 (7)3.2稳定性 (7)3.3收敛性 (8)第四章口服药物在体内的变化 (10)4.1问题的基本概述 (10)4.2建立口服药物的吸收模型 (11)4.2.1问题的提出 (11)4.2.2模型的假设 (11)4.2.3模型的符号及意义 (12)4.2.4应用线性三步法求解 (12)第五章结论与展望 (16)5.1结论 (16)5.2进一步展望 (16)参考文献 (17)致谢 (18)附录 (19)声明 (22)第一章绪论自然界和工程技术中的很多现象,例如自动控制系统的运行、电力系统的运行、飞行器的运动、化学反应的过程、生态平衡的某些问题等,都可以抽象成为一个常微分方程初值问题。
线性多步法:线性多步法(linear multistep method)是1993年发布的数学名词。
线性:线性特性是卷积运算的性质之一,即设a,b为任意常数,则对于函数f(z,y),h(x,y)和g(x,y),{af(x,Y)+bh(z,y)}*g(z,y)=af(x,y)*g(x,y)+bh(x,y)*g(z,y)。
同样有:f(x,y)*{ah(x,y)+bg(x,y)=af(x,y)*h(x,y)+bf(x,y)*g(x,y)。
定义:卷积(Convolution)既是一个由含参变量的无穷积分定义的函数,又代表一种运算。
其运算性质在线性系统理论、光学成像理论和傅里叶变换及其应用中经常用到。
卷积的运算性质有线性特性,复函数的卷积,可分离变量,卷积符合交换律,卷积符合结合律,坐标缩放性质,卷积位移不变性,函数f(x,y)与函数的卷积。
其中线性特性可描述为:设a,b为任意常数,则对于函数f(z,y),h(x,y)和g(x,y),{af(x,Y)+bh(z,y)}*g(z,y)=af(x,y)*g(x,y)+bh(x,y)*g(z,y)。
同样有:f(x,y)*{ah(x,y)+bg(x,y)=af(x,y)*h(x,y)+bf(x,y)*g(x,y)。
多步法:多步法用于普通微分方程的数值解。
从概念上讲,一个数值方法从一个初始点开始,然后在时间上向前迈出一小步,找到下一个解点。
该过程以后的步骤来绘制解决方案。
单步方法(如欧拉方法)只指一个前一点及其导数来确定当前值。
诸如Runge-Kutta的方法采取一些中间步骤(例如,半步)来获得更高阶的方法,但是在进行第二步之前丢弃所有先前的信息。
多步法尝试通过保留和使用先前步骤的信息而不是丢弃它来提高效率。
因此,多步法是指前几个点和导数值。
在多步法的情况下,使用先前点和导数值的线性组合。
常微分方程数值解的多步法。
从概念上讲,一种数值方法是从一个初始点开始的,然后在时间上向前迈出一小步,以找到下一个求解点。
以下过程绘制解决方案。
单步方法(例如欧拉方法)仅参考前一点及其导数来确定当前值。
诸如Runge-Kutta之类的方法采取了一些中间步骤(例如,半步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步方法试图通过保留和使用先前步骤的信息而不是丢弃信息来提高效率。
因此,多步法是指前几个点和导数值。
在多步法的情况下,使用先前点和导数值的线性组合。
常微分方程数值解的多步法。
从概念上讲,一种数值方法是从一个初始点开始的,然后在时间上向前迈出一小步,以找到下一个求解点。
以下过程绘制解决方案。
单步方法(例如欧拉方法)仅参考前一点及其导数来确定当前值。
诸如Runge-Kutta之类的方法采取了一些中间步骤(例如,半步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步方法试图通过保留和使用先前步骤的信息而不是丢弃信息来提高效率。
因此,多步法是指前几个点和导数值。
在多步法的情况下,使用先前点和导数值的线性组合。
具体定义常微分方程的数值方法近似地解决了形式初值的问题结果是离散时间ti处y(t)的近似值:其中h是时间步长,而i是整数。
多步方法使用上一个S步骤的信息来计算下一个值。
特别地,多步方法使用yi和f(ti,yi)来计算当前步骤所需的y值。
因此,多步方法是一种具有以下形式的方法:确定系数ai和bi的方法。
该方法的设计者选择系数来平衡对实际解决方案的需求,从而获得一种易于使用的方法。
通常,许多系数为零以简化方法。
可以区分显式和隐式方法。
如果bi = 0,则此方法称为“显式”,因为此公式可以直接计算yn + s。
如果bi≠0,则此方法称为“隐式”,因为yn + s的值取决于f(tn + s,yn + s),并且必须为yn + s。
迭代方法(例如牛顿法)通常用于求解隐式公式。
95置信区间计算公式
1、样本数量少的话可以直接算:可信区间为阳性样本平均值±标准差(X±SD) 。
2、可信区间介绍:按一定的概率或可信度(1-α)用一个区间来估计总体参数所在的范围,该范围通常称为参数的可信区间或者置信区间(confidenceinterval,CI),预先给定的概率(1-α)称为可信度或者置信度(confidencelevel),常取95%或99%。
3、总体参数的估计,是统计学一大重要的应用。
主要为均数和率的估计,本期做了一个简单的小结,实现该项功能,希望对大家有用。
SPSS对总体均数在探索里是默认实现的,然而对于率却不可以,本例采用比率方法实现。
扩展资料
例:估计该县成年人HBsAg阳性率的95%置信区间。
本例n=100,p=0.12,可采用正态近似法估计总体率的置信区间。
阳性率的95%的置信区间按式(p -Zα/2Sp,p+Zα/2Sp)计算:
下限:p-1.96Sp=0.12-1.96×0.0325=0.0563
上限:p+1.96Sp=0.12+1.96×0.0325=0.1837
所以该县成年人HBsAg阳性率的95%置信区间为(5.63%,18.37%)。
-1-第十五章 常微分方程的解法建立微分方程只是解决问题的第一步,通常需要求出方程的解来说明实际现象,并加以检验。
如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以肯定得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来”的,即使看起来非常简单的方程如22dyy x dx=+,于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。
§1 常微分方程的离散化下面主要讨论一阶常微分方程的初值问题,其一般形式是(,)()dyf x y a x bdxy a y ⎧=≤≤⎪⎨⎪=⎩ (1) 在下面的讨论中,我们总假定函数(,)f x y 连续,且关于y 满足李普希兹(Lipschitz)条件,即存在常数L ,使得|(,)(,)|||f x y f x y L y y -≤-这样,由常微分方程理论知,初值问题(1)的解必定存在唯一。
所谓数值解法,就是求问题(1)的解 y (x )在若干点012N a x x x x b =<<<<=处的近似值(1,2,,)n y n N =的方法,(1,2,,)n y n N = 称为问题(1)的数值解,1n n n h x x +-=称为由n x 到1n x +的步长。
今后如无特别说明,我们总取步长为常量h 。
建立数值解法,首先要将微分方程离散化,一般采用以下几种方法: (i )用差商近似导数 若用向前差商()()1n n y x y x h+-代替()n y x '代入(1)中的微分方程,则得()()()()1,(0,1,)n n n n y x y x f x y x n h+-≈=化简得()()()()1,n n n n y x y x hf x y x +≈+如果用()n y x 的近似值n y 代入上式右端,所得结果作为()1n y x +的近似值,记为1n y +, 则有()1,(0,1,)n n n n y y hf x y n +=+=(2)这样,问题(1)的近似解可通过求解下述问题()10,(0,1,)()n n n n y y hf x y n y y a +⎧=+=⎨=⎩ (3) 得到,按式(3)由初值0y 可逐次算出1y ,2y ,…。
回归95%置信区间的计算公式
回归95%置信区间的计算公式是:
置信区间=预测值±临界值*标准差
其中,预测值是模型对给定输入的预测结果,临界值是根据样本
数量和置信水平来确定的,标准差是模型的残差的标准差。
对于简单线性回归模型,临界值可以通过查找t分布表来确定,
该表给出了根据自由度(样本数量减去模型参数的个数减1)和置信水平得出的t值。
对于多元回归模型,临界值可以通过查找F分布表和t 分布表来确定。
拓展:
除了使用临界值乘以标准差的方法计算置信区间外,还有一种常
见的方法是使用Bootstrap方法。
Bootstrap通过从已有数据集中用有放回抽样的方法生成多个重复样本,然后对每个样本进行建模和预测,最后对这些预测结果进行统计,得到置信区间。
这种方法更加灵活,
可以用于更复杂的回归模型和数据集,但是计算量更大。
根据稳定性试验检测的含量数据,以标示量(%)对时间进行直线回归,得回归方程,求出各时间点标示量得计算值(Y),然后计算标示量(Y)95%单侧可信限的置信区间,Y±ZZ =tN-2*S*√1/N+(X- X)2/∑(Xi- X )2 式中tN-2 为概率0.05,自由度N-2 的t 单侧分布值,可以从统计学书中查到,N 为数组;S=√Q/N-2 ;Q=LYY-bLxy;b 为直线斜率;LYY 为Y 的离差平方和;Lxy 为xy 离差乘积和。
LYY=∑y2-(∑y)2/NLxy=∑xy-(∑x)(∑y)/N 式中X 为给定自变量;X 为自变量X 的平均值。
将有关点连接可得出分布于回归线两侧得曲线。
取质量标准中规定的含量低限(根据各品种实际规定限度确定)与置信区间下界线相交点对应的时间,即为药物的有效期。
根据情况也可拟何为二次方程或三次方程或对数函数方程维持化学药品稳定性的建议药品的有效期是指市售包装药品在规定的贮存条件下放置,药品的质量仍符合注册质量标准的时间段。
药品的有效期要综合加速试验和长期试验的结果,进行适当的统计分析,最终一般以长期试验的结果来确定。
基于商业需要,生产企业通常希望将化学药品的有效期订得更长久,但却往往忽略一些可能影响药品质量和安全性的因素,如较少考虑所销售区域的高温、高湿、强光等特殊气候环境对药物稳定性影响等。
只有对上述问题进行综合考虑,细致分析,才能合理确立化学药品的有效期。
重视稳定性试验基础稳定性试验基础是指加速试验和长期试验的设计应合理,样品的批次和规模应符合要求,考察项目应全面且具有灵敏性,各项目的分析方法应经过充分验证,测试数据应准确等。
没有以上这些试验基础,是无法准确确定药品有效期的,也无法保证上市后产品在一定时期内的质量和安全。
例如,某延长药品有效期(由24 个月延长至36 个月)的补充申请,使用的样品批次仍为该药申请注册上市的中试规模产品,这种做法欠妥。