如何求解参数的矩估与极大似然估计
- 格式:doc
- 大小:175.00 KB
- 文档页数:4
数理统计7:矩法估计(MM)、极⼤似然估计(MLE),定时截尾实验在上⼀篇⽂章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要⼀定的参数估计⽅法。
今天我们将讨论常⽤的点估计⽅法:矩估计、极⼤似然估计,它们各有优劣,但都很重要。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:矩法估计矩法估计的重点就在于“矩”字,我们知道矩是概率分布的⼀种数字特征,可以分为原点矩和中⼼矩两种。
对于随机变量X⽽⾔,其k阶原点矩和k阶中⼼矩为a_k=\mathbb{E}(X^k),\quad m_k=\mathbb{E}[X-\mathbb{E}(X)]^k,特别地,⼀阶原点矩就是随机变量的期望,⼆阶中⼼矩就是随机变量的⽅差,由于\mathbb{E}(X-\mathbb{E}(X))=0,所以我们不定义⼀阶中⼼矩。
实际⽣活中,我们不可能了解X的全貌,也就不可能通过积分来求X的矩,因⽽需要通过样本(X_1,\cdots,X_n)来估计总体矩。
⼀般地,由n个样本计算出的样本k阶原点矩和样本k阶中⼼矩分别是a_{n,k}=\frac{1}{n}\sum_{j=1}^{n}X_j^k,\quad m_{n,k}=\frac{1}{n}\sum_{j=1}^{n}(X_j-\bar X)^k.显然,它们都是统计量,因为给出样本之后它们都是可计算的。
形式上,样本矩是对总体矩中元素的直接替换后求平均,因此总是⽐较容易计算的。
容易验证,a_{n,k}是a_k的⽆偏估计,但m_{n,k}则不是。
特别地,a_{n,1}=\bar X,m_{n,2}=\frac{1}{n}\sum_{j=1}^{n}(X_j-\bar X)^2=\frac{n-1}{n}S^2\xlongequal{def}S_n^2,⼀阶样本原点矩就是样本均值,⼆阶样本中⼼矩却不是样本⽅差,⽽需要经过⼀定的调整,这点务必注意。
113第六章 参数估计一、 知识点1. 点估计的基本概念2. 点估计的常用方法(1) 矩估计法① 基本思想:以样本矩作为相应的总体矩的估计,以样本矩的函数作为相应的总体矩的同一函数的估计。
(2) 极大似然估计法设总体X 的分布形式已知,其中),,,(21k θθθθΛ=为未知参数,),,(21n X X X Λ为简单随机样本,相应的),,,(21n x x x Λ为它的一组观测值.极大似然估计法的步骤如下:① 按总体X 的分布律或概率密度写出似然函数∏==ni i n x p x x x L 121);();,,,(θθΛ (离散型)∏==ni i n x f x x x L 121);();,,,(θθΛ (连续型)若有),,,(ˆ21nx x x Λθ使得);,,,(max )ˆ;,,,(2121θθθn n x x x L x x x L ΛΛΘ∈=,则称这个θˆ为参数θ的极大似然估计值。
称统计量),,,(ˆ21nX X X Λθ为参数θ的极大似然估计量。
② 通常似然函数是l θ的可微函数,利用高等数学知识在k θθθ,,,21Λ可能的取值范围内求出参数的极大似然估计k l x x x nl l ,,2,1),,,,(ˆˆ21ΛΛ==θθ 将i x 换成i X 得到相应的极大似然估计量k l X X X nl l ,,2,1),,,,(ˆˆ21ΛΛ==θθ 注:当);,,,(21θn x x x L Λ不可微时,求似然函数的最大值要从定义出发。
3. 估计量的评选标准(1) 无偏性:设),,(ˆˆ21nX X X Λθθ=是参数θ的估计量,如果θθ=)ˆ(E ,则称θˆ为θ的无偏估计量。
(2) 有效性:设1ˆθ,2ˆθ是θ的两个无偏估计,如果)ˆ()ˆ(21θθD D ≤,则称1ˆθ较2ˆθ更有效。
4. 区间估计114 (1) 定义 设总体X 的分布函数族为{}Θ∈θθ),;(x F .对于给定值)10(<<αα,如果有两个统计量),,(ˆˆ111n X X Λθθ=和),,(ˆˆ122n X X Λθθ=,使得{}αθθθ-≥<<1ˆˆ21P 对一切Θ∈θ成立,则称随机区间)ˆ,ˆ(21θθ是θ的双侧α-1置信区间,称α-1为置信度;分别称1ˆθ和2ˆθ为双侧置信下限和双侧置信上限. (2) 单侧置信区间(3) 一个正态总体下未知参数的双侧置信区间(置信度为α-1)二、 习题 1. 选择题(1) 设n X X X ,,,21Λ是来自总体X 的一个样本,则以下统计量①)(211n X X + ②)2(14321n X X X X X n ++++-Λ ③)2332(101121n n X X X X +++-作为总体均值μ的估计量,其中是μ的无偏估计的个数是A.0B.1C.2D.3(2) 设321,,X X X 是来自正态总体)1,(μN 的样本,现有μ的三个无偏估计量321332123211216131ˆ;1254131ˆ;2110351ˆX X X X X X X X X ++=++=++=μμμ其中方差最小的估计量是A.1ˆμB.2ˆμC. 3ˆμD.以上都不是 (3) 设0,1,0,1,1为来自0-1分布总体B(1,p)的样本观察值,则p 的矩估计值为 。
五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。
参数估计的目标是通过样本数据来推断总体参数的值。
下面将介绍五种常用的参数估计方法。
一、点估计点估计是最常见的参数估计方法之一。
它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。
点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。
它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。
最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。
矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。
它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。
矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。
二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。
为了更全面地描述参数的估计结果,我们需要使用区间估计。
区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。
常见的区间估计方法有置信区间和预测区间。
置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。
置信区间的计算依赖于样本数据的统计量和分布假设。
一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。
预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。
预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。
与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。
三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。
它将参数看作是一个随机变量,并给出参数的后验分布。
贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。
一、概述矩估计和极大似然估计是统计学中常用的两种参数估计方法,它们在众多领域中都有着重要的应用。
本文将对均匀分布的矩估计和极大似然估计进行深入探讨,分析它们的特点和适用范围,并对两种方法的优缺点进行比较和总结。
二、均匀分布的矩估计1. 均匀分布的概念和特点均匀分布是概率论中常见的一种离散型随机变量分布,它具有概率密度函数f(x) = 1/(b-a),其中a和b分别为分布的起始值和终止值。
均匀分布的特点是在[a, b]区间内各个数值出现的概率相等。
2. 均匀分布的矩估计方法均匀分布的参数估计通常采用矩估计方法。
矩估计是利用样本矩来估计总体矩,其基本思想是将样本矩与总体矩相等,通过方程求解得到参数的估计值。
对于均匀分布而言,可以通过样本均值和样本方差来进行参数估计,具体的计算过程可以通过数学推导来进行详细阐述。
三、均匀分布的极大似然估计1. 极大似然估计的基本原理极大似然估计是统计学中另一种常用的参数估计方法,其基本思想是在给定样本条件下,寻找最大化似然函数的参数值作为估计值。
对于均匀分布而言,可以通过求解似然函数的一阶导数为0的方程来得到参数的极大似然估计值,具体的推导过程也需要进行详细的分析和阐述。
2. 极大似然估计与矩估计的比较极大似然估计与矩估计在参数估计的方法和理论基础上存在着一定的差异,它们在不同情况下各有优劣。
通过比较两种方法在均匀分布参数估计中的应用,可以得出它们在精确度、稳定性和有效性等方面的优缺点,为使用者提供更多的参考依据。
四、实例分析通过实际的数据样本和模拟实验,可以对均匀分布的矩估计和极大似然估计进行对比分析。
选择适当的参数和样本规模,比较两种方法得到的参数估计值与真实值之间的偏差情况,从而验证两种方法的可靠性和有效性。
五、结论通过对均匀分布的矩估计和极大似然估计的深入研究和分析,可以得出它们在不同情况下各有优劣,适用范围也有所不同。
在实际应用中,需要根据具体问题的特点选择合适的参数估计方法,以保证估计结果的准确性和可靠性。
关于矩估计与极大似然估计的典型例题例1,设总体X 具有分布律⎟⎟⎠⎞⎜⎜⎝⎛−−22)1()1(2321~θθθθX 其中10<<θ为未知参数。
已经取得了样本值1,2,1321===x x x ,试求参数θ的矩估计与极大似然估计。
解:(i )求矩估计量,列矩方程(只有一个未知参数)XX E =−=−×+−×+=θθθθθ23)1(3)1(22)(22得6523432x 32X 3=−=−=−=矩θ(ii ii)求极大似然估计,写出似然函数,即样本出现的概率)求极大似然估计,写出似然函数,即样本出现的概率),,()(332211x X x X x X P L ====θ)1,2,1(321====X X X P )1()2()1(321=×=×==X P X P X P )1(2)1(2522θθθθθθ−=×−×=对数似然)1ln(ln 52ln )(ln θθθ−++=L 0115)(ln =−−=θθθθd L d 得极大似然估计为65ˆ=极θ例2,某种电子元件的寿命某种电子元件的寿命((以h 记)X 服从双参数指数分布服从双参数指数分布,,其概率密度为⎪⎩⎪⎨⎧≥−−=其他,0],/)(exp[1)(µθµθx x x f 其中0>µθ,均为未知参数,自一批这种零件中随机抽取n 件进行寿命试验,设它们的失效时间分别为.,,2,1n x x x L (1)求µθ,的最大似然估计量;(2)求µθ,的矩估计量。
解:(1)似然函数,记样本的联合概率密度为∏===ni i n x f x x x f L 12,1)();,,()(µθµθ,,L ⎪⎩⎪⎨⎧≥−−=∏=其他,0,,,]/)(exp[12,11µθµθn n i i x x x x L ⎪⎩⎪⎨⎧>≤−−=∑=)1()1(1,0),/)(exp(1xx n x ni i n µµθµθ在求极大似然估计时在求极大似然估计时,,0)(=µθ,L 肯定不是最大值的似然函数值,不考虑这部分,只考虑另一部分。
如何求解参数的矩估与极大似然估计
一、矩估计
若统计量T作为总体参数θ(或g(θ ))的估计时,T就称为θ(或g(θ ))的估计量。
定义 6.1矩估计量 设n X X X ,,,21 是总体X的样本,X的分布函数),,:(1k x F θθ 依赖于参数k θθ,,1 ,假定X 的r 阶矩为),,,(1k r r EX θθα =
,,,1k r =(或r 阶中心矩)相应的样本矩记为),,,(1n r X X A 如下的k 个议程
k r a X X A k r n r ,,1),,,(),,(11 ==θθ (6.1) 的解,称为未知参数k θθ,,:1 的矩估计。
二、最(极)大似然估计
设总体X的密度函数θθ),,(x f 是参数或参数向量,n X X X ,,,21 是该总体的样本,对给定的一组观测值n x x x ,,,21 ,其联合密度是θ的函数,又称似然函数,记为:
∏=∈==n
k k n x f x x L L 11),,(),,,()(Θθθθθ
其中Θ为参数集,若存在,),,(ˆˆ1Θθθ∈=n x x 使Θθθθ∈≥),()ˆ(L L 就称 ),,(ˆ1n x x θ是θ的最大似然估计值,而),,(ˆ1n
X X θ是θ的最大似然估计量。
注:1)对给定的观测值,)(θL 是θ的函数,最大似然估计的原理是选择使观测值
n x x x ,,,21 出现的“概率”达到最大的θˆ作为θ的估计。
2)最大似然估计具有不变性,即若θ
ˆ是θ的最大似然估计,则)(θg 的最大似然估计为)ˆ(θ
g 。
但是,矩估计不具有不变性,例如假定θ是X 的矩估计,一般情形下,2θ的矩估计不是2
X 。
1. 设总体ξ服从指数分布,其概率密度函数为⎪⎩⎪⎨⎧<≤=-0
01)(1
x x e
x f x θ
θ
,(θ>0)
试求参数θ的矩估计和极大似然估计.
解:ξ的概率密度为()1,0
;,00,0x
e x
f x x θ
θθθ-⎧≥⎪=>⎨⎪<⎩
似然函数为: ()11i x n i L e
θ
θθ
-=⎛⎫=⋅ ⎪⎝⎭
∏ 1
1
1
1
1
n
i
i
i x n
x n
n
i e
e
θ
θ
θ
θ
=--
=∑=
⋅=⋅∏
而
1
1
ln ln n
i i L n x θθ
==-⋅-
∑
令
2
1
ln 11
0n
i
i d L n x
d θθθ
==-⋅+=∑
得到:1
1ˆn
i i x n θ==∑=X
因此得到参数θ的极大似然估计量为:1
1ˆn i i X n θ==∑
矩估计求法如下: 因为1E μξθ==
令111n
i i A x n θ===∑
则1
1ˆn i i x n θ==∑
从而θ的矩估计量为1
1ˆn i i X n θ==∑=X
2. 设母体ξ具有指数分布,密度函数为⎩⎨
⎧<≤=-0
0),(x x
e x
f x
λλλ,(λ>0) 试求参数λ的矩估计和极大似然估计. 解:参数λ的矩估计求法为:因为
11
E μξλ
==
令:
111
1n
i i A x n λ===∑ 则λ的矩估计量为:1
1
1ˆn
i
i n
A X
λ
===∑
极大似然估计求法如下:
ξ的概率密度为(),0
,0,0x e x f x x λλλ-⎧≥=⎨<⎩
似然函数为: ()1,0i
n
x i L e x λ
λλ-==
≥∏
而1
ln ln n
i
i L n x
λλ
==-∑
令
1
ln 0n
i i d L n x d λλ==-=∑ 解得λ的极大似然估计量为:1
ˆn
i
i n
x
λ
==∑
3. 设总体X ~N(μ,1), ),,(1n X X 为来自X 的一个样本,试求参数μ的矩估计和最大似然估计.
解:矩估计求法为:
()1E X μμ==
令111n
i i A x n μ===∑
则1
1ˆn
i i x n μ
==∑ 极大似然估计求法为:
X 的概率密度为: (
)()2
2
;x f x μμ--
=
似然函数为:
(
)()2
2
1
i x n
i L μμ--==
()()21
1
22
2n
i i x n e
μπ=-
--∑
=
而
()()2
1
1ln ln 222n i i n L x πμ==---∑
令
()1
ln 1202n
i i d L x d μμ==-=∑ 即
()1
0n
i
i x μ=-=∑
解得μ的极大似然估计量为:1
1ˆn
i i x n μ
==∑。