卫星图像处理流程
- 格式:docx
- 大小:1.21 MB
- 文档页数:25
卫星图像处理流程一.图像预处理1.降噪处理由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。
(1)除周期性噪声和尖锐性噪声周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。
它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。
一般可以用带通或者槽形滤波的方法来消除。
消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。
图1 消除噪声前图2 消除噪声后(2)除坏线和条带去除遥感图像中的坏线。
遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。
一般采用傅里叶变换和低通滤波进行消除或减弱。
图3 去条纹前图4 去条纹后图5 去条带前图6 去条带后2.薄云处理由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。
3.阴影处理由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。
二.几何纠正通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。
特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。
1.图像配准为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。
(1)影像对栅格图像的配准将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。
图7 图像配准前图8 图像配准后(2)影像对矢量图形的配准将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。
2.几何粗纠正这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.3.几何精纠正为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。
使用卫星遥感数据进行测绘的数据处理方法导言:随着现代测绘技术的不断发展,卫星遥感数据成为了测绘领域中不可或缺的重要数据源。
卫星遥感数据能够提供高分辨率、大范围的地理信息,帮助测绘工作更加精准、高效。
然而,卫星遥感数据常常需要经过一系列的数据处理方法,以提取有效的地理信息。
本文将介绍一些常用的卫星遥感数据处理方法,以助于更好地利用卫星遥感数据进行测绘。
一、数据预处理1. 图像预处理卫星遥感数据通常经过传感器、通道、大气等多种因素的影响,需要进行图像预处理以去除噪声、纠正图像偏移、增强图像对比度等。
常用的图像预处理方法包括平滑滤波、直方图均衡化、大气校正等。
2. 高程数据处理卫星遥感数据中常包含高程信息,如数字高程模型(DEM)数据。
为了得到地形的准确表达,需要对DEM数据进行降噪、插值、拟合等处理。
常见的方法包括小波降噪、三角网剖分插值等。
二、特征提取1. 目标提取卫星遥感数据可以用于提取地物目标,如道路、建筑、植被等。
常见的目标提取方法包括阈值分割、特征分类、形态学处理等。
这些方法可以帮助测绘工作者有效地在遥感图像中提取出感兴趣的地物目标,并进行后续的测绘工作。
2. 变化检测卫星遥感数据可以用于检测地理环境的变化,如土地利用变化、海岸线变化等。
常用的变化检测方法包括监督分类、无监督分类、基于图像差异的方法等。
通过变化检测,可以了解地理环境的演变情况,为后续的测绘工作提供更准确的数据支持。
三、精度评定与校正1. 精度评定在进行测绘工作时,需要对卫星遥感数据的精度进行评定。
常见的精度评定方法包括地物提取精度评定、高程数据精度评定等。
通过精度评定,可以客观地评价卫星遥感数据的可靠性,为后续的测绘工作提供参考依据。
2. 数据校正卫星遥感数据在获取过程中可能存在校正问题,如几何校正、辐射校正等。
为了获得更准确的地理信息,需要进行相应的数据校正工作。
常见的数据校正方法包括基于地面控制点的几何校正、大气校正等。
使用卫星图像进行地图制作的方法引言:画地图是人类长期以来的一项重要活动。
随着科技的进步,我们能够利用卫星图像来制作地图,这给地理信息学领域带来了革命性的变化。
本文将探讨利用卫星图像进行地图制作的方法,以及这些方法在提高地图制作精度和准确性方面的潜力。
一、卫星图像获取与处理1. 卫星图像获取借助先进的遥感技术,我们能够从卫星上获取高分辨率的地球表面图像数据。
现代遥感卫星通常配备了多个传感器,能够以各种波段(如可见光、红外线等)捕捉地球不同特征,提供多样化的图像数据。
2. 卫星图像处理卫星图像获取后,需要进行一系列的预处理和处理步骤,以消除图像中的噪声、校正变形和增强图像质量。
常见的图像处理方法包括图像滤波、几何校正、辐射校正等。
处理后的图像将成为地图制作的基础数据。
二、数字高程模型(DEM)生成数字高程模型是地图制作中不可或缺的一部分。
通过对卫星图像进行处理,我们可以推导出海拔信息,并生成数字高程模型。
DEM能够提供地表的高程数据,为制作等高线、地形分析和三维可视化等工作奠定基础。
三、图像分类与特征提取为了更好地进行地图制作,卫星图像需要进行分类和特征提取。
这意味着对图像中的不同地物进行识别和分类,并将其转化为对应的地理特征。
图像分类可以利用机器学习算法,如支持向量机和深度学习,来辅助自动或半自动地进行。
四、地图制作与更新一旦完成图像分类和特征提取,我们就可以开始制作地图。
这包括选择合适的图层和符号系统,安排地理特征的位置和比例,并根据需要添加文字和图例等元素。
与传统地图制作相比,使用卫星图像进行地图制作更具灵活性和高度可视化,能够更好地满足用户的需求。
在地图制作之后,我们还需要不断进行地图的更新和维护。
卫星图像提供了一种方便快捷的方式来获取地理数据,并可用于更新地图上的特征和信息。
通过定期采集和分析卫星图像,我们能够及时更新地图,反映出地球表面的变化。
五、卫星图像制作地图的潜力和挑战使用卫星图像进行地图制作的方法具有很大的潜力和吸引力。
卫星遥感图像处理的关键技术与应用随着科技的不断进步,卫星遥感技术已经成为一种非常重要的手段,用于获取地球表面的相关信息。
卫星遥感图像处理技术是对卫星获取的图像进行处理和分析,以获得更准确和清晰的地球表面信息。
本文将重点探讨卫星遥感图像处理的关键技术与应用。
一、关键技术1. 遥感图像的预处理遥感图像的预处理是卫星遥感图像处理的第一步,包括图像增强、噪声去除、几何校正、辐射校准等。
图像增强技术旨在提高图像的质量和可视性,常用的增强技术包括直方图均衡化、空间滤波等。
噪声去除技术通过降低图像中的噪声水平,改善图像的质量。
几何校正是为了消除图像中由于地表坡度、地球曲率等因素造成的形变影响,使图像在空间上具有准确的几何性质。
辐射校准是调整图像的辐射亮度,以使其能够反映地表上不同物质的辐射特性。
2. 特征提取与目标识别特征提取与目标识别是卫星遥感图像处理中的关键环节。
特征提取是指通过计算和分析图像中的纹理、形状、颜色等特征来描述地物。
常用的特征提取方法包括灰度共生矩阵、小波变换、主成分分析等。
目标识别是指根据提取到的特征,将图像中的地物进行分类和识别。
常见的目标识别方法包括支持向量机、人工神经网络等。
3. 数据融合与时序分析数据融合是指将多源、多尺度、多时相的遥感数据进行融合,以获取更全面和准确的地表信息。
常用的数据融合方法包括像素级数据融合、特征级数据融合和决策级数据融合。
时序分析是利用多时相的遥感影像进行变化检测和监测,以了解地表变化的情况。
常见的时序分析方法包括差异图像法、频域分析法等。
二、应用领域1. 环境监测与灾害评估卫星遥感图像处理技术在环境监测与灾害评估方面具有重要的应用价值。
通过对遥感图像进行处理和分析,可以实时监测和评估地表水质、土地利用、植被覆盖等环境因素的变化情况,为环境保护、资源管理等提供可靠的数据支持。
同时,在自然灾害的预警和应急响应中,卫星遥感图像处理技术可以提供灾害范围、类型和程度等关键信息,为抢救和救援工作提供科学依据。
卫星影像处理流程
卫星影像处理流程是指对卫星拍摄的图像进行处理的过程,主要
包括图像获取、几何校正、辐射校正、图像增强、分类和应用等步骤。
首先,需要通过卫星拍摄图像。
通常使用的传感器有光学传感器
和微波传感器等。
图像获取的过程中需要考虑目标区域、云量、时间
等因素。
其次,进行几何校正。
由于地球表面不是平坦的,卫星影像难免
产生几何变形。
几何校正的目标是将卫星影像变为与实际地理位置一
致的图像。
然后,需要进行辐射校正。
辐射校正的目标是消除掉图像中的辐
射噪声,使图像的亮度与地表物体的真实反射率相对应。
接下来,进行图像增强。
图像增强的目标是提高图像中的信息清
晰度和对比度,使得地表物体的特征更加明显。
最后,进行分类和应用。
分类的目标是对卫星影像进行地物分类,确定各种物体在图像中的位置和分布。
应用的目标是根据分类和增强
后的卫星影像,进行资源调查、环境监测、农业等相关领域的应用。
以上就是卫星影像处理流程的主要步骤,目的是为了使卫星影像
能够更好地被使用和应用。
遥感卫星影像仪的高效图像处理与智能解译技术遥感卫星影像仪在现代地球观测和环境监测中扮演着重要角色。
它们能够获取地球表面的高分辨率图像,为各个领域的研究和决策提供了宝贵的数据支持。
然而,由于获取到的遥感数据庞大且复杂,需要进行高效的图像处理和智能解译,才能更好地发挥其价值。
本文将介绍一些相关的高效图像处理和智能解译技术。
一、遥感卫星影像仪的图像处理技术1. 图像增强图像增强是提高遥感影像视觉效果和信息可提取性的重要步骤。
通过调整图像的亮度、对比度和色彩平衡等参数,可以增强图像的细节和辨识度。
常用的图像增强技术包括直方图均衡化、滤波和锐化等。
2. 图像拼接由于遥感卫星影像仪的视场有限,通常需要多幅影像进行拼接,以获取更大范围的地表信息。
图像拼接技术可以将多幅影像无缝拼接成一幅大图像,保持图像的连续性。
常用的图像拼接算法包括特征点匹配和块匹配法等。
3. 压缩与存储由于遥感数据量庞大,为了有效地传输和存储,需要进行数据压缩。
常见的遥感数据压缩算法有有损压缩(如JPEG)和无损压缩(如LZW)等。
压缩后的数据可以节约存储空间,并且有利于后续处理和分析。
二、遥感卫星影像仪的智能解译技术1. 自动分类遥感影像中的特征信息非常丰富,通过使用机器学习和人工智能等技术,可以实现对地物的自动分类。
常见的自动分类算法包括支持向量机(SVM)、神经网络和决策树等。
这些算法可以根据遥感影像的特征,自动将地物分成不同的类别,提高分类的准确性和效率。
2. 目标检测目标检测是在遥感影像中寻找并识别感兴趣的目标物体。
借助深度学习等技术,可以实现对遥感影像中的建筑物、道路和水体等目标的快速检测。
目标检测技术有助于地理信息系统(GIS)的建设和城市规划等领域的决策支持。
3. 变化检测利用不同时期的遥感影像,可以进行地表变化的检测。
通过比较两幅或多幅影像之间的差异,可以判断出地表的变化情况。
变化检测技术在环境监测、灾害评估和资源管理等方面具有重要的应用价值。
北京揽宇方圆信息技术有限公司遥感卫星影像图像数据处理介绍北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。
遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。
优势:1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。
2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。
3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。
4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。
5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。
6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。
以最有效的法律手段来保障您的权益。
7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。
8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。
卫星测量图像的处理和解译方法随着科技的不断发展,卫星测量图像已经成为了现代地理信息系统中的重要内容。
它提供了坐标和位置信息,用于辅助地图制作、环境监测、资源管理等诸多领域。
然而,要正确解读卫星测量图像并提取有用的信息并不容易。
本文将介绍一些常见的卫星测量图像处理和解译方法,以帮助读者更好地理解卫星测量图像。
一、图像预处理在进行卫星测量图像的后续处理和解译之前,首先需要对图像进行预处理。
这包括图像增强、去噪等步骤。
1. 图像增强图像增强是通过调整图像的亮度、对比度等参数来改善图像的质量和清晰度的过程。
常用的图像增强方法包括直方图均衡化、滤波等。
直方图均衡化可以通过重新分配图像的像素值来增强图像的对比度。
而滤波可以通过去除图像中的噪声来提高图像的清晰度。
2. 去噪卫星测量图像由于受到大气干扰、传感器噪声等因素的影响,通常都会存在一定程度的噪声。
为了减少噪声对图像解译的影响,需要对图像进行去噪处理。
常用的去噪方法包括中值滤波、小波去噪等。
二、图像解译图像解译是将卫星测量图像中的像素值转化为现实世界中的信息的过程。
它可以帮助我们了解地表特征、环境变化等信息,对环境监测、资源管理等方面具有重要意义。
1. 特征提取特征提取是图像解译的关键步骤之一。
它通过识别和提取图像中的地物特征,如道路、建筑物、植被等,来获取更高层次的地理信息。
常用的特征提取方法包括边缘检测、分割算法等。
2. 分类与识别分类与识别是将特征提取的结果与事先定义的地物类型进行对比和匹配的过程。
通过建立分类模型和利用机器学习算法,可以自动识别图像中的地物类型。
同时,也可以借助地理信息系统的辅助,在图像上手动绘制感兴趣区域进行分类。
无论是自动识别还是手动分类,都可以帮助我们更好地理解和利用卫星测量图像。
三、应用与展望卫星测量图像的处理和解译方法在实际应用中有着广泛的应用前景。
通过对卫星测量图像的处理和解译,可以实现环境监测、资源管理、城市规划等多个领域的需求。
遥感卫星影像处理与遥感数据应用遥感卫星影像处理与遥感数据应用是一项利用遥感技术获取和处理卫星影像数据,并应用这些数据进行地理信息分析、资源评估、环境监测等方面的研究与应用任务。
遥感卫星是指运行在地球轨道上的一种卫星,它搭载有遥感传感器,可以通过感应地球表面反射、辐射的电磁波,并将其转化为数字图像数据。
这些遥感卫星影像数据可以提供高分辨率、广覆盖率的地球表面信息,对于地理空间分析具有重要意义。
遥感卫星影像处理是指基于遥感卫星获取的数字图像数据,通过一系列的图像预处理、影像纠正、特征提取、分类分类等一系列操作,将原始影像数据转化为可用于地理信息系统分析的矢量或光栅数据。
这些数据可以被用于生成地形图、土地利用分类图、植被盖度研究等目的。
首先,遥感卫星影像处理的第一步是图像预处理。
图像预处理包括辐射校正、大气校正、几何校正等步骤,以确保获取到的影像数据具备一致性和可比性。
通过辐射校正,可以将原始影像数据从数值上可比较,并将其转换为反射率或亮度值。
大气校正则移除了大气对影像的影响,减少由于大气散射和吸收而引起的信息噪声。
几何校正则纠正影像中的位置、角度等几何失真,以保证影像数据准确地反映地球表面的特征。
其次,遥感卫星影像处理的下一步是影像纠正。
影像纠正是指通过对影像进行投影变换、边缘匹配、波段匹配等处理,使得图像在空间尺度和角度上比较准确地与地理实体匹配。
通过影像纠正,可以使影像数据受到形变、旋转、尺度变化等因素的影响较小,为后续的地理信息分析提供准确的基础。
第三,遥感卫星影像处理的关键步骤是特征提取。
特征提取是指从遥感卫星影像数据中提取出与地理实体相关的特征信息。
常见的特征包括植被指数、土地利用类型、水体信息等。
通过采用不同的光谱拓谱和纹理特征的计算方法,可以提取出不同类型地物的特征信息。
特征提取是遥感卫星影像处理的重要环节,为后续的分类和分析提供了基础。
最后,遥感卫星影像处理的最终目标是分类分析。
分类分析是利用遥感卫星影像数据,对地球表面的特征进行分割、分类和识别。
卫星图像处理流程
一.图像预处理
1.降噪处理
由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。
(1)除周期性噪声和尖锐性噪声
周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。
它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。
一般可以用带通或者槽形滤波的方法来消除。
消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。
图1 消除噪声前
图2 消除噪声后
(2)除坏线和条带
去除遥感图像中的坏线。
遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。
一般采用傅里叶变换和低通滤波进行消除或减弱。
图3 去条纹前
图4 去条纹后
图5 去条带前
图6 去条带后
2.薄云处理
由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。
3.阴影处理
由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。
二.几何纠正
通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。
特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。
1.图像配准
为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。
(1)影像对栅格图像的配准
将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。
图7 图像配准前
图8 图像配准后
(2)影像对矢量图形的配准
将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。
2.几何粗纠正
这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.
3.几何精纠正
为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。
(1)图像对图像的纠正
利用已有准确地理坐标和投影信息的遥感影像,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。
(2)图像对地图(栅格或矢量)
利用已有准确地理坐标和投影信息的扫描地形图或矢量地形图,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。
图9 参考地形图
图10 待纠正影像
图11 纠正后影像和地形图套和效果
(3)图像对已知坐标点(地面控制点)
利用已有准确地理坐标和投影信息的已知坐标点或地面控制点,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。
4.正射纠正
利用已有地理参考数据(影像、地形图和控制点等)和数字高程模型数据(DEM、GDEM),对原始遥感影像进行纠正,可消除或减弱地形起伏带来的影像变形,使得遥感影像具有准确的地面坐标和投影信息。
图12 数字正射影像图
三.图像增强
为使遥感图像所包含的地物信息可读性更强,感兴趣目标更突出,需要对遥感图像进行增强处理。
1.彩色合成
为了充分利用色彩在遥感图像判读和信息提取中的优势,常常利用彩色合成的方法对多光谱图像进行处理,以得到彩色图像。
彩色图像可以分为真彩色图像和假彩色图像。
图13真彩色合成( TM321)
图14 假彩色合成(TM432)
2.直方图变换
统计每幅图像的各亮度的像元数而得到的随机分布图,即为该幅图像的直方图。
一般来说,包含大量像元的图像,像元的亮度随机分布应是正态分布。
直方图为非正态分布,说明图像的亮度分布偏亮、偏暗或亮度过于集中,图像的对比度小,需要调整该直方图到正态分布,以改善图像的质量。
图15 直方图拉伸前(原图偏暗)
图16 直方图拉伸后
图17 直方图拉伸前(原图对比度不强)
图18 直方图拉伸后(线性拉伸)
3.密度分割
将灰度图像按照像元的灰度值进行分级,再分级赋以不同的颜色,使原有灰度图像变成伪彩色图像,达到图像增强的目的。
图19 原始图像
图20 密度分割图像
4.灰度颠倒
灰度颠倒是将图像的灰度范围先拉伸到显示设备的动态范围(如0~255)到饱和状态,然后再进行颠倒,使正像和负像互换。
图21 灰度颠倒前
图22 灰度颠倒后
5.图像间运算
两幅或多幅单波段图像,空间配准后可进行算术运算,实现图像的增强。
常见的有加法运算、减法运算、比值运算和综合运算。
例如:
减法运算:可突现出两波段差值大的地物,如红外-红,可突现植被信息。
比值运算:常用于计算植被指数、消除地形阴影等。
植被指数:NDVI=(IR-R)/(IR+R)
图23 原始图像
图24 NDVI植被指数图像
6.邻域增强
又叫滤波处理,是在被处理像元周围的像元参与下进行的运算处理,邻域的范围取决于滤波器的大小,如3×3或5×5等。
邻区法处理用于去噪声、图像平滑、锐化和相关运算。
图25 原始图像
图26 拉普拉斯滤波图像(5×5)
7.主成分分析
也叫PCA变换,可以用来消除特征向量中各特征之间的相关性,并进行特征选择。
主成分分析算法还可以用来进行高光谱图像数据的压缩和信息融合。
例如:对LandsatTM的6个波段的多光谱图像(热红外波段除外)进行主成分分析,然后把得到的第1,2,3主分量图像进行彩色合成,可以获得信息量非常丰富的彩色图像。
图27 第一主成分
图28 第二主成分
图29 第三主成分
图30 第四主成分
图31第五主成分
图32 第六主成分
8.K-T变换
即Kauth-Thomas变换,又称为“缨帽变换”。
这种变换着眼点在于农作物生长过程而区别于其他植被覆盖,力争抓住地面景物在多光谱空间中的特征。
目前对这个变换的研究主要集中在MSS与TM两种遥感数据的应用分析方面。
图33 第一主分量(亮度)
图34 第二主分量(绿度)
图35第三主分量
9.图像融合
遥感图像信息融合是将多源遥感数据在统一的地理坐标系中,采用一定的算法生成一组新的信息或合成图像的过程。
不同的遥感数据具有不同的空间分辨率、波谱分辨率和时相分辨率,如果能将它们各自的优势综合起来,可以弥补单一图像上信息的不足,这样不仅扩大了各自信息的应用范围,而且大大提高了遥感影像分析的精度。
图36 多光谱影像
图37高分辨率影像
图38 融合影像(HSV融合)
四.图像裁剪
在日常遥感应用中,常常只对遥感影像中的一个特定的范围内的信息感兴趣,这就需要将遥感影像裁减成研究范围的大小。
图39 原始影像
1.按ROI裁剪
根据ROI(感兴趣区域)范围大小对被裁减影像进行裁剪。
图40 按ROI(行政区)域裁剪
2.按文件裁剪
按照指定影像文件的范围大小对被裁减影像进行裁剪。
3.按地图裁剪
根据地图的地理坐标或经纬度的范围对被裁减影像进行裁剪。
图41 按地图坐标范围裁剪
五.图像镶嵌和匀色
1.图像镶嵌
也叫图像拼接,是将两幅或多幅数字影像(它们有可能是在不同的摄影条件下获取的)拼在一起,构成一幅整体图像的技术过程。
通常是先对每幅图像进行几何校正,将它们规划到统一的坐标系中,然后对它们进行裁剪,去掉重叠的部分,再将裁剪后的多幅影像装配起来形成一幅大幅面的影像。
图42镶嵌左影像
图43 镶嵌右影像
图44 镶嵌结果影像
2.影像匀色
在实际应用中,我们用来进行图像镶嵌的遥感影像,经常来源于不同传感器、不同时相的遥感数据,在做图象镶嵌时经常会出现色调不一致,这时就需要结合实际情况和整体协调性对参与镶嵌的影像进行匀色。
图45 匀色前影像
图46 匀色后影像
六.遥感信息提取
遥感图像中目标地物的特征是地物电磁波的辐射差异在遥感影像上的反映。
依据遥感图像上的地物特征,识别地物类型、性质、空间位置、形状、大小等属性的过程即为遥感信息提取。
目前信息提取的方法有:目视判读法和计算机分类法。
其中目视判读是最常用的方法。
1.目视判读
也叫人工解译,即用人工的方法判读遥感影像,对遥感影像上目标地物的范围进行手工勾绘,达到信息提取的目的。
图47 人工解译水系
2.图像分类
是依据是地物的光谱特征,确定判别函数和相应的判别准则,将图像所有的像元按性质分为若干类别的过程。
(1)监督分类
在研究区域选有代表性的训练场地作为样本,通过选择特征参数(如亮度的均值、方差等),建立判别函数,对样本进行分类,依据样本的分类特征来识别样本像元的归属类别的方法。
图48 原图像
图49 监督分类图像
(2)非监督分类
没有先验的样本类别,根据像元间的相似度大小进行归类,将相似度大的归为一类的方法。
(3)其他分类方法
包括神经网络分类、分形分类、模糊分类等分类方法,以及他数据挖掘方法如模式识别、人工智能等,在这里不做进一步阐述。