数字图像处理_第三版_知识总结及习题解答(冈萨雷斯版)
- 格式:pdf
- 大小:505.86 KB
- 文档页数:10
23887《数字图像处理(第3版)》习题解答(上传)(1)胡学龙编著《数字图像处理(第 3 版)》思考题与习题参考答案目录第1章概述 (1)第2章图像处理基本知识 (4)第3章图像的数字化与显示 (7)第4章图像变换与二维数字滤波 (10)第5章图像编码与压缩 (16)第6章图像增强 (20)第7章图像复原 (25)第8章图像分割 (27)第9章数学形态学及其应用 (31)第10章彩色图像处理 (32)第1章概述1.1连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、形状一致的像素组成。
这样,数字图像可以用二维矩阵表示。
将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。
图像的数字化包括离散和量化两个主要步骤。
在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。
1.2采用数字图像处理有何优点?答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。
(1)处理精度高。
(2)重现性能好。
(3)灵活性高。
2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。
3.数字图像处理技术适用面宽。
4.数字图像处理技术综合性强。
1.3数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。
1.4 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。
答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可以看成是静态的图像。
图形是人工或计算机生成的图案,而动画则是通过把人物的表情、动作、变化等分解后画成许多动作瞬间的画幅,再用摄影机连续拍摄成一系列画面,给视觉造成连续变化的图画。
数字图像处理(岗萨雷斯第三版)课后习题答案第3章3.6原题:试解释为什么离散直⽅图均衡技术⼀般不能得到平坦的直⽅图?答:假设有⼀副图像,共有像素个数为n=MN(M⾏N列),像素灰度值取值范围为(0~255),那么该图像的灰度值的个数为L=256,为了提⾼图像的对⽐度,通常我们都希望像素的灰度值不要都局促到某⼀个狭窄的范围,也就是我们通常说的图像灰度值的动态分布⼩。
最好是在有效灰度值取值范围上,每个灰度值都有MN/L个像素,这个时候我们就可以得到⼀张对⽐度最理想的图像,也就是说像素的取值跨度⼤,像素灰度值的动态范围⼤。
因为直⽅图是PDF(概率密度函数)的近似,⽽且在处理中,不允许造成新的灰度级,所以在实际的直⽅图均衡应⽤中,很少见到完美平坦的直⽅图。
因此,直⽅图均衡技术不能保证直⽅图的均匀分布,但是却可以扩展直⽅图的分布范围,也就意味着在直⽅图上,偏向左的暗区和偏向右的亮区都有像素分布,只是不能保证每个灰度级上都有像素分布。
(百度答案:)由于离散图像的直⽅图也是离散的,其灰度累积分布函数是⼀个不减的阶梯函数。
如果映射后的图像仍然能取到所有灰度级,则不发⽣任何变化。
如果映射的灰度级⼩于256,变换后的直⽅图会有某些灰度级空缺。
即调整后灰度级的概率基本不能取得相同的值,故产⽣的直⽅图不完全平坦。
3.8原题:在某些应⽤中,将输⼊图像的直⽅图模型化为⾼斯概率密度函数效果会是⽐较好的,⾼斯概率密度函数为:其中m和σ分别是⾼斯概率密度函数的均值和标准差。
具体处理⽅法是将m和σ看成是给定图像的平均灰度级和对⽐度。
对于直⽅图均衡,您所⽤的变换函数是什么?答:直⽅图均衡变换函数的⼀般表达式如下:在回答这个问题时,有两点⾮常重要,需要学⽣表达清楚。
第⼀,这个表达式假定灰度值r只有正值,然⽽,⾼斯密度函数通常的取值范围是-∞~∞,认识到这点是⾮常重要的,认识到这点,学⽣才能以多种不同的⽅式来解决问题。
对于像标准差这样的假设,好的答案是,需要⾜够⼩,以便于当r为⼩于0时,在p r(r)曲线下的⾯积可以被忽略。
第六章6.1 给出用于产生图6.5中标为“日光”的点的红光、绿光、蓝光的百分比。
从图中可知,x=0.31,y=0.32,由x+y+z=1可得z=0.37,这是三色值系数。
我们感兴趣的是三色值XYZ。
由他们的变换公式:x = X/(X+Y+Z),y=Y/(X/Y/Z),z=Z/(X/Y/Z),可知他们的比例是相同的,故可得:X=0.31,Y=0.32,Y=0.376.2用c 表示给定的颜色,并且给出它的坐标,用(x0,y0)表示,c 和c1之间的距离以及c1和c2的距离分别为:c1占c的百分比表示为:c2的百分比用p2表示:p2=100-p1,由上面的等式我们知道,作为例子,当c=c1时,那么d(c,c1)=0,并且p1=100%,p2=0%,同样当d(c,c1)=d(c1,c2)时,p1=0%,p2=100%,从它们简单的关系中可以容易地得出它们的值。
6.5在中心点有R/2+ B/2+G= R+G+B /2 + G /2=midgray+G/2,由于增加了灰色分量和强度使人们看起来像纯绿色。
6.7 在每幅12比特图像中有4096212=种可能值。
对于灰度色彩,所有的RGB 分量必须相等,所以有4096种不同的灰度。
6.8(a )R 图像中的所有像素值都是255。
在G 图像中,第一列全是0,第二列全是1,最后一列全由255组成。
在B 图像中,第一行全为255,第二行全为254,直到最后一行全为0。
(b )(令坐标轴编号同书中图6.7(RGB 彩色立方体示意图)相同。
)则:(0,0,0)=白色,(1,1,1)=黑色,(1,0,0)=青色,(1,1,0)=蓝色,(1,0,1)=绿色,(0,1,1)=红色,(0,0,1)=黄色,(0,1,0)=深红色。
(c)不包括黑点和白点是饱和的。
在包含黑点或者白点时,饱和度会下降。
6.10 从式(6.5-5)的RGB 亮度映射函数推导出式(6.5-6)的CMY 亮度映射函数。
《数字图像处理_第三版_中_冈萨雷斯》第⼀章笔记
前⾔:没有做过系统性的学习,如何能对⼀个领域达到深究的地步。
《数字图像处理》——冈萨雷斯版只是零零碎碎的阅读过,未曾做过系统性的通读,故⽤博客记录,以便后续的巩固和温习,帖⼦只记录⼀些个⼈觉得⽐较有⽤的知识。
第⼀章笔记
数字图像处理领域
各种成像实例:伽马摄像成像、X射线成像、紫外波段成像、可见光及红外波段成像、微波波段成像、⽆线电波段成像。
超声图像成像步骤
数字图像处理的基本步骤
图像获取:图像起源
图像增强:对⼀幅图像进⾏某种操作。
图像复原:改进图像外观的处理领域,倾向于图像退化的数学或者概率模型为基础。
⼩波:不同分辨率描述图像的基础。
形态学处理:提取图像分量的⼯具,描述图像形状。
分割:将⼀幅图像划分它的组成部分或者⽬标。
图像处理系统的组成
趋势:⼤型图像处理系统朝着⼩型化和通⽤化的⼩型机并且带有专⽤图像处理硬件的混合系统的⽅向发展。
第二章(第二版是和*的矩形,第三版是和圆形)对应点的视网膜图像的直径x 可通过如下图题所示的相似三角形几何关系得到,即()()01702302.x .d =解得x=。
根据 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小25327.⨯π成像单元的阵列。
假设成像单元之间的间距相等,这表明在总长为1.5 mm (直径) 的一条线上有655个成像单元和654个成像单元间隔。
则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=×10-6 m 。
如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。
换句话说, 眼睛不能检测到以下直径的点:m .d .x 61011060-⨯<=,即m .d 610318-⨯<当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。
节描述的视觉过程在这种情况下起什么作用?亮度适应。
虽然图中未显示,但交流电的却是电磁波谱的一部分。
美国的商用交流电频率是77HZ 。
问这一波谱分量的波长是多少?光速c=300000km/s ,频率为77Hz 。
因此λ=c/v= * 108(m/s)/77(1/s) = *106m = 3894 Km.根据图得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 假设中心在(x0,y0)的平坦区域被一个强度分布为:])0()0[(22),(y y x x Ke y x i -+--= 的光源照射。
为简单起见,假设区域的反射是恒定的,并等于,令K=255。
如果图像用k 比特的强度分辨率进行数字化,并且眼睛可检测相邻像素间8种灰度的突变,那么k 取什么值将导致可见的伪轮廓? 解:题中的图像是由:()()()()()[]()()[]20202020********y y x x y y x x e .e y ,x r y ,x i y ,x f -+---+--=⨯==一个截面图像见图(a )。
第二章2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形)对应点的视网膜图像的直径x 可通过如下图题2.1所示的相似三角形几何关系得到,即()()01702302.x .d =解得x=0.06d 。
根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小25327.⨯π成像单元的阵列。
假设成像单元之间的间距相等,这表明在总长为1.5 mm (直径) 的一条线上有655个成像单元和654个成像单元间隔。
则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m 。
如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。
换句话说, 眼睛不能检测到以下直径的点:m .d .x 61011060-⨯<=,即m .d 610318-⨯<2.2 当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。
2.1节描述的视觉过程在这种情况下起什么作用?亮度适应。
2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。
美国的商用交流电频率是77HZ 。
问这一波谱分量的波长是多少?光速c=300000km/s ,频率为77Hz 。
因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km. 2.5根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为:])0()0[(22),(y y x x Ke y x i -+--= 的光源照射。
为简单起见,假设区域的反射是恒定的,并等于1.0,令K=255。
第二章2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形)对应点的视网膜图像的直径x 可通过如下图题2.1所示的相似三角形几何关系得到,即()()01702302.x .d =解得x=0.06d 。
根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小25327.⨯π成像单元的阵列。
假设成像单元之间的间距相等,这表明在总长为1.5 mm (直径) 的一条线上有655个成像单元和654个成像单元间隔。
则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m 。
如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。
换句话说, 眼睛不能检测到以下直径的点:m .d .x 61011060-⨯<=,即m .d 610318-⨯<2.2 当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。
2.1节描述的视觉过程在这种情况下起什么作用?亮度适应。
2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。
美国的商用交流电频率是77HZ 。
问这一波谱分量的波长是多少?光速c=300000km/s ,频率为77Hz 。
因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km. 2.5根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为:])0()0[(22),(y y x x Ke y x i -+--= 的光源照射。
为简单起见,假设区域的反射是恒定的,并等于1.0,令K=255。
数字图像处理课件(冈萨雷斯第三版)复习材料(1) 名词解释RGB Red Green Blue,红绿蓝三原色CMYK Cyan Magenta yellow blacK , 用于印刷的四分色HIS Horizontal Situation Indicator 水平位置指示器FFT Fast Fourier Transform Algorithm (method) 快速傅氏变换算法CWT continuous wavelet transform 连续小波变换DCT D iscrete Cosine Transform 离散余弦变换DWT DiscreteWaveletTransform 离散小波变换CCD Charge Coupled Device 电荷耦合装置Pixel: a digital image is composed of a finite number of elements,each of which hasa particular lication and value,theseelements are called pixel 像素DC component in frequency domain 频域直流分量GLH Gray Level Histogram 灰度直方图Mather(basic)wavelet:a function (wave) used to generate a set of wavelets, 母小波,用于产生小波变换所需的一序列子小波Basis functions basis image 基函数基图像Multi-scale analysis 多尺度分析Gaussian function 高斯函数sharpening filter 锐化滤波器Smoothing filter/convolution 平滑滤波器/卷积Image enhancement /image restoration 图像增强和图像恢复(2)问答题1. Cite one example of digital imageprocessingAnswer: In the domain of medical image processing we may need to inspect a certain class of images generated by an electron microscope to eliminate bright, isolated dots that are no interest.2.Cite one example of frequency domain operation from the following processing result, make a general comment about ideal highpass filter (figure B) and Gaussian highpass filter(figure D)A.Original imageB.ideal highpass filterIn contrast to the ideal low pass filter, it is to let all the signals above the cutoff frequency fc without loss, and to make all the signals below the cutoff frequency of FC without loss of.C.the result of ideal highpass filterD.Gaussian highpass filterHigh pass filter, also known as "low resistance filter", it is an inhibitory spectrum of the low frequency signal and retain high frequency signal model (or device). High pass filter can make the high frequency components, while the high-frequency part of the frequency in the image of the sharpThe law of sampling process should be followed, also called the sampling theorem and the sampling theorem. The sampling theorem shows the relationship between the sampling frequency and the signal spectrum, and it is the basic basis of the continuous signal discretization. In analog / digital signal conversion process, when the sampling frequency fs.max greater than 2 times the highest frequency present in the signal Fmax fs.max>2fmax, sampling digital signal completely retained the information in the original signal, the general practical application assurance sampling frequency is 5 ~ 10 times higher than that of the signal of the high frequency; sampling theorem, also known as the Nyquist theorem6.A mean filter is a linear filter but a median filter is not, why?Mean filter is a typical linear filtering algorithm, it is to point to in the target pixels in the image to a template, this template including its surrounding adjacent pixels and the pixels in itself.To use in the template to replace all the pixels of average pixel values.Linear filter, median filter, also known as the main method used in the bounded domain average method.Median filter is a kind of commonly used nonlinear smoothing filter and its basic principle is to put the little value in a digital image or sequence to use value at various points in the field of a point at which the value to replace, its main function is to let the surrounding pixel gray value differences between larger pixel change with the surrounding pixels value close to the values, which can eliminate the noise of the isolated points, so median filter to filter out the salt and pepper noise image is very effective.(3)算法题1.The following matrix A is a 3*3 image and B is 3*3 Laplacian mask, what will be the resulting image? (Note that the elements beyond the border remain unchanged)2.Develop an algorithm to obtain the processing result B from original image A3.Develop an algorithm which computes the pseudocolor image processing by means of fourier tramsformAnswer:The steps of the process are as follow:(1) Multiply the input image f(x,y) by (-1)x+y to center the transform;(2) Compute the DFT of the image from (1) to get power spectrum F(u,v) of Fourier transform.(3) Multiply by a filter functionh(u,v) .(4) Compute the inverse DFT of the result in (3).(5) Obtain the real part of the result in (4).(6) Multiply the result in (5) by(-1)x+y4.Develop an algorithm to generate approximation image series shown in the following figure b** means of down sampling.(4)编程题There are two satellite photos of night asblew.Write a program with MATLAB totell which is brighterAn 8*8 image f(i,i) has gray levels givenby the following equation:f(i,i)=|i-j|, i,j=0,1 (7)Write a program to find the outputimage obtained by applying a 3*3 medianfilter on the image f(i,j) ;note that theborder pixels remain unchanged.Answer:1.Design an adaptive local noise reduction filter and apply it to an image with Gaussian noise. Compare the performance of the adaptive local noise reduction filter with arithmetic mean and geometric mean filter.Answer:clearclose all;rt=imread('E:\数字图像处理\yy.bmp');gray=rgb2gray(rt);subplot(2,3,1);imshow(rt);title('原图像') ;subplot(2,3,2);imshow(gray);title('原灰度图像') ;rtg=im2double(gray);rtg=imnoise(rtg,'gaussian',0,0.005)%加入均值为0,方差为0.005的高斯噪声subplot(2,3,3);imshow(rtg);title('高噪点处理后的图像');[a,b]=size(rtg);n=3;smax=7;nrt=zeros(a+(smax-1),b+(smax-1));for i=((smax-1)/2+1):(a+(smax-1)/2)for j=((smax-1)/2+1):(b+(smax-1)/2)nrt(i,j)=rtg(i-(smax-1)/2,j-(smax-1)/2);endendfigure;imshow(nrt);title('扩充后的图像');nrt2=zeros(a,b);for i=n+1:a+nfor j=n+1:b+nfor m1=3:2m2=(m1-1)/2;c=nrt2(i-m2:i+m2,j-m2:j+m2);%使用7*7的滤波器Zmed=median(median(c));Zmin=min(min(c));Zmax=max(max(c));A1=Zmed-Zmin;A2=Zmed-Zmax;if(A1>0&&A2<0)B1=nrt2(i,j)-Zmin;B2=nrt2(i,j)-Zmax;if(B1>0&&B2<0)nrt2(i,j)= nrt2(i,j);elsenrt2(i,j)=Zmed;endcontinue;endendendendnrt3=im2uint8(nrt2);figure;imshow(nrt3);title('自适应中值滤波图');2.Implement Wiener filter with “wiener2” function of MatLab to an image with Gaussian noise and compare the performance with adaptive local noise reduction filter.代码如下:>> I=imread('E:\数字图像处理\yy.bmp');>>J=rgb2gray(I);>>K = imnoise(J,'gaussian',0,0.005);>>L=wiener2(K,[5 5]);>>subplot(1,2,1);imshow(K);title('高噪点处理后的图像');>>subplot(1,2,2);imshow(L);title('维纳滤波器处理后的图像');3. Image smoothing with arithmetic averaging filter (spatial convolution).图像平滑与算术平均滤波(空间卷积)。
第二章(第二版是和* 的矩形,第三版是和圆形)对应点的视网膜图像的直径x 可通过如下图题所示的相似三角形几何关系得到,即d 2 x 20.30.017解得x=。
根据节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小327.52 成像单元的阵列。
假设成像单元之间的间距相等,这表明在总长为 1.5 mm(直径)的一条线上有655 个成像单元和654 个成像单元间隔。
则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=× 10-6 m。
如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。
换句话说,眼睛不能检测到以下直径的点:x 0.06d 1.1 10 6 m ,即 d 18.3 10 6 m当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。
节描述的视觉过程在这种情况下起什么作用亮度适应。
虽然图中未显示,但交流电的却是电磁波谱的一部分。
美国的商用交流电频率是 77HZ。
问这一波谱分量的波长是多少光速 c=300000km/s ,频率为 77Hz。
因此λ =c/v= * 10 8(m/s)/77(1/s) = *10 6m = 3894 Km.根据图得:设摄像机能看到物体的长度为x (mm),则有 :500/x=35/14; 解得: x=200 ,所以相机的分辨率为: 2048/200=10; 所以能解析的线对为:10/2=5 线对 /mm.假设中心在( x0,y0 )的平坦区域被一个强度分布为:i (x, y) Ke [( x x 0) 2 ( y y 0) 2 ] 的光源照射。
为简单起见,假设区域的反射是恒定的,并等于,令 K=255。
如果图像用 k 比特的强度分辨率进行数字化,并且眼睛可检测相邻像素间 8 种灰度的突变,那么 k 取什么值将导致可见的伪轮廓解:题中的图像是由:f x, y i x, y r x, y 255e x x02 y y0 2255ex x0 2 y y0 21.0一个截面图像见图(a)。
光电图像处理复习复习资料:课件,课堂笔记,参考书1、2考题类型:简答题,问答题,计算题考试分值:70%(平时30%)答疑时间:根据考试时间确定主要内容一、数字图像处理的基础1、图像的定义A、二维或三维景物呈现在人心目中的影像。
B、自然界的物体经可见光的照射由人的视觉系统所感知的景物。
C、任何数据场在空间的有序排列。
D、图像是对客观存在事物的一种相似性的生动模仿与描述,使物体的一种不完全的、不精确的描述,但是某种意义上是适当的表示。
2、图像分类物理图像:是指物质或能量的实际分布。
虚拟图像:采用数学方法,将由概念形成的物体(不是实物)进行表示的图像,即采用数学建模的方式,利用成像几何原理,在计算机上制作的。
模拟图像:可用连续函数来描述,光照位置和强度均为连续变化。
数字图像,可用矩阵或数组描述,光照位置和强度均为离散化的。
(这有个公式。
)3、数字图像处理(概念)是指应用计算机来来合成、变换已有的数字图像,从而产生一种新的效果,并把加工处理的图像重新输出的过程。
三个层次A. 图像处理:对图像进行各种加工,以改善图像的视觉效果;强调图像之间进行的变换。
(图像到图像的过程)B. 图像分析:对图像中感兴趣的目标进行提取和分割,获得目标的客观信息(特点或性质),建立对图像的描述,以观察者为中心研究客观世界。
(图像到数据的过程)C. 图像理解:研究图像中各目标的性质和他们之间的相互关联;得出对图像内容含义的理解及原来客观场景的解释;以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作。
(图像到抽象的过程)4、数字图像处理的内容图像获取和表示:该过程主要是把模拟信号转化为计算机所能接受的数字形式,以及把数字图像显示和表现出来。
这一过程主要包括获取图像、光电转换及数字化等几个步骤。
图像增强:改善图像主观视觉感受质量。
没有最好的方法,只能选择比较合适的方法。
图像复原:当造成图像退化原因已知,可以对图像进行复原。
4.1 重复例4.1,但是用函数()2(/4/4)f t A W W =-≤和()0f t =,对于其他所有的t 值。
对你的结果和例子中的结果之间的任何不同,解释原因。
解:()()()()224442422222sin 22sin 2sin 22j tWj tW Wj tW j Wj W j W j Wj j F f t e dtA edtA ej A ee j A e ej ee jAW F W A WWπμπμπμπμπμπμπμθθμπμπμπμθπμμπμπμπμ∞--∞-------===-⎡⎤=--⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦-=⎛⎫∴=⎪⎝⎭⎛⎫ ⎪⎝⎭=⎰⎰傅立叶变换的幅值是不变的;由于周期不同,4.2 证明式(4.4-2)()()()()()()~~2222j tj tn j tn j n Ttn n F f t edtf t t n T edt f t t n T edt f eπμπμπμπμμδδ∞--∞∞∞--∞=-∞∞∞--∞=-∞∞-∆=-∞==-∆=-∆=⎰∑⎰∑⎰∑中的()~F μ在两个方向上是无限周期的,周期为1/T ∆证明:(1) 要证明两个方向上是无限周期1/T ∆,只需证明根据如下式子:可得:其中上式第三行,由于k, n 是整数,且和的极限是关于原点对称。
(2) 同样的需要证明根据如下式子:()()()()()()~~2222j tj tn j tn j n Ttn n F f t edtf t t n T edt f t t n T edt f eπμπμπμπμμδδ∞--∞∞∞--∞=-∞∞∞--∞=-∞∞-∆=-∞==-∆=-∆=⎰∑⎰∑⎰∑可得:其中第三行由于k, n 都为整数,所以21j kneπ-=。
4.3 可以证明(Brancewell[2000])1()1()t t δδ⇔⇔和。
使用前一个性质和表4.3中的平移性质,证明连续函数()cos(2)f t nt π=的傅立叶变换是()()()()1/2F n n μδμδμ=++-⎡⎤⎣⎦,其中是一个实数。
胡学龙编著《数字图像处理(第 3 版)》思考题与习题参考答案目录第 1 章概述 (1)第 2 章图像处理基本知识 (4)第 3 章图像的数字化与显示 (7)第 4 章图像变换与二维数字滤波 (10)第 5 章图像编码与压缩 (16)第 6 章图像增强 (20)第 7 章图像复原 (25)第 8 章图像分割 (27)第 9 章数学形态学及其应用 (31)第 10 章彩色图像处理 (32)第1章概述1.1连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、形状一致的像素组成。
这样,数字图像可以用二维矩阵表示。
将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。
图像的数字化包括离散和量化两个主要步骤。
在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。
1.2采用数字图像处理有何优点?答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。
(1)处理精度高。
(2)重现性能好。
(3)灵活性高。
2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。
3.数字图像处理技术适用面宽。
4.数字图像处理技术综合性强。
1.3数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。
1.4 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。
答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可以看成是静态的图像。
图形是人工或计算机生成的图案,而动画则是通过把人物的表情、动作、变化等分解后画成许多动作瞬间的画幅,再用摄影机连续拍摄成一系列画面,给视觉造成连续变化的图画。
1. 数字数据传输通常用波特率度量,其定义为每秒钟传输的比特数。
通常的传输是以一个开始比特,一个字节(8 比特)的信息和一个停止比特组成的包完成的。
基于这个概念回答以下问题:(a) 用56K 波特的调制解调器传输一幅1024×1024、256 级灰度的图像需要用几分钟?(b) 以750K 波特[这是典型的电话DSL(数字用户线)连接的速度]传输要用多少时间?解:(a)T=M/56000=(1024×1024)×(8+2)/56000=187.25s=3.1min(b) T=M/56000=(1024×1024)×(8+2)/750000=14s2.两个图像子集S1和S2图下图所示。
对于V={1},确定这两个子集是(a)4-邻接,(b)8-邻接,(c)m-邻接。
a) S1 和S2 不是4 连接,因为q 不在N4(p)集中。
(b) S1 和S2 是8 连接,因为q 在N8(p)集中。
(c) S1 和S2 是m 连接,因为q 在集合N D(p)中,且N4(p)∩ N4(q)没有V 值的像素3. 考虑如下所示的图像分割(a) 令V={0,1}并计算p 和q 间的4,8,m 通路的最短长度。
如果在这两点间不存在特殊通路,试解释原因。
(b) 对于V={1,2}重复上题。
解:(a) 当V={0,1}时,p 和q 之间不存在4 邻接路径,因为不同时存在从p 到q 像素的4 毗邻像素和具备V 的值,如图(a)p 不能到达q。
8 邻接最短路径如图(b),最短长度为4。
m邻接路径如图(b)虚线箭头所示,最短长度为5。
这两种最短长度路径在此例中均具有唯一性。
(b) 当V={1, 2}时,最短的4 邻接通路的一种情况如图(c)所示,其长度为6,另一种情况,其长度也为6;8 邻接通路的一种情况如图(d)实线箭头所示,其最短长度为4;m 邻接通路的一种情况如图(d)虚线箭头所示,其最短长度为6.或解: (1) 在V={0,1}时,p和q之间通路的D4距离为∞,D8距离为4,Dm距离为5。
word格式-可编辑-感谢下载支持胡学龙编著《数字图像处理(第 3 版)》思考题与习题参考答案目录第1章概述 (1)第2章图像处理基本知识 (4)第3章图像的数字化与显示 (7)第4章图像变换与二维数字滤波 (10)第5章图像编码与压缩 (16)第6章图像增强 (20)第7章图像复原 (25)第8章图像分割 (27)第9章数学形态学及其应用 (31)第10章彩色图像处理 (32)第1章概述1.1连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、形状一致的像素组成。
这样,数字图像可以用二维矩阵表示。
将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。
图像的数字化包括离散和量化两个主要步骤。
在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。
1.2采用数字图像处理有何优点?答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。
(1)处理精度高。
(2)重现性能好。
(3)灵活性高。
2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。
3.数字图像处理技术适用面宽。
4.数字图像处理技术综合性强。
1.3数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。
1.4 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。
答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可以看成是静态的图像。
图形是人工或计算机生成的图案,而动画则是通过把人物的表情、动作、变化等分解后画成许多动作瞬间的画幅,再用摄影机连续拍摄成一系列画面,给视觉造成连续变化的图画。