红外线 CO2气体分析仪器的结构、原理、使用57页PPT
- 格式:ppt
- 大小:4.30 MB
- 文档页数:57
二氧化碳检测仪的原理随着工业的发展和汽车的普及,二氧化碳的排放量逐渐增加,对环境和人类健康造成了较大的威胁。
因此,二氧化碳检测变得愈发重要。
本文将详细介绍二氧化碳检测仪的原理及其工作原理。
一、仪器简介二氧化碳检测仪是一种用于测量环境中二氧化碳浓度的仪器。
它通常由传感器、信号处理器和显示屏组成。
传感器负责检测环境中的二氧化碳气体,信号处理器将传感器获取到的信号进行处理,最后将结果显示在显示屏上。
二、原理介绍二氧化碳检测仪的原理基于红外光吸收原理。
红外光是一种波长较长的电磁波,而二氧化碳是一种吸收红外光的气体。
在二氧化碳检测仪中,传感器发射出红外光,并测量通过样本后的光强度的变化。
根据这种变化,可以确定二氧化碳的浓度。
三、工作原理1. 发射红外光二氧化碳检测仪的传感器首先会发射一束红外光。
这种红外光具有特定的波长,使得它能够与二氧化碳发生相互作用。
2. 通过样本发射的红外光穿过待测样本,与其中的二氧化碳分子相互作用。
二氧化碳分子会吸收红外光的一部分能量,导致穿过样本后的光强度发生变化。
3. 接收光信号传感器接收样本后的光信号,并将其转化为电信号。
4. 信号处理接收到的电信号会被传输到信号处理器,该处理器使用算法和校准方法,将电信号转化为二氧化碳浓度的数值。
5. 显示结果处理后的结果会显示在仪器的显示屏上,以便用户了解环境中二氧化碳的浓度情况。
四、使用范围和意义二氧化碳检测仪广泛应用于各种场景。
例如,在工业生产中,利用二氧化碳检测仪可以监测生产环境中的二氧化碳浓度,以确保工人的健康和安全。
在室内空气质量监测中,二氧化碳检测仪能够提供室内空气的二氧化碳含量信息,帮助人们了解和改善室内空气质量。
此外,二氧化碳检测仪也可以用于公共交通工具、地下停车场和矿井等封闭空间的二氧化碳监测。
对于个人用户而言,使用二氧化碳检测仪可以使我们更加关注和了解我们所处环境的二氧化碳浓度状况,有助于健康呼吸和提高生活质量。
总结:二氧化碳检测仪是通过红外光吸收原理来测量环境中二氧化碳浓度的一种仪器。
红外鉴定二氧化碳引言:红外鉴定是一种常用的分析方法,通过检测物质的红外吸收谱图来确定其组成和结构。
在环境监测和空气质量监测中,红外鉴定二氧化碳是一项重要的技术,因为二氧化碳是一种主要的温室气体,对全球气候变化起着重要作用。
本文将介绍红外鉴定二氧化碳的原理、应用和优势。
一、红外鉴定二氧化碳的原理红外鉴定二氧化碳的原理基于分子的振动和转动。
二氧化碳分子由一个碳原子和两个氧原子组成,其中碳-氧键和碳-氧键呈线性排列。
在红外光谱区域,二氧化碳分子会吸收特定波长的红外辐射。
这是由于二氧化碳分子中的碳-氧键发生振动,导致红外光的能量被吸收。
通过测量二氧化碳分子吸收红外辐射的强度和波数,可以确定样品中二氧化碳的含量。
二、红外鉴定二氧化碳的应用1. 环境监测:红外鉴定二氧化碳广泛应用于环境监测领域。
通过监测大气中二氧化碳的浓度,可以评估全球气候变化的趋势,并制定相应的减排政策。
此外,红外鉴定二氧化碳还可以用于监测工业废气中的二氧化碳排放,确保环境质量符合相关标准。
2. 空气质量监测:红外鉴定二氧化碳还可以用于空气质量监测。
在室内空气质量监测中,检测室内空气中的二氧化碳浓度可以评估空气的新鲜程度,帮助人们判断是否需要通风换气。
在室外空气质量监测中,监测二氧化碳的浓度可以评估空气中其他污染物的扩散情况,为环境保护提供数据支持。
三、红外鉴定二氧化碳的优势1. 非接触式检测:红外鉴定二氧化碳是一种非接触式的检测方法,不需要样品与仪器直接接触,避免了污染和损坏样品的可能性。
2. 快速准确:红外鉴定二氧化碳具有快速准确的特点。
通过红外光谱的扫描,可以在短时间内得到样品中二氧化碳的含量,提高了检测效率。
3. 高灵敏度:红外鉴定二氧化碳可以在低浓度范围内进行检测,灵敏度高。
这对于环境监测和空气质量监测来说是非常重要的。
四、总结红外鉴定二氧化碳是一种重要的分析技术,可以用于环境监测和空气质量监测。
通过测量样品中二氧化碳分子对红外辐射的吸收,可以准确快速地确定二氧化碳的含量。
红外气体分析仪原理
红外气体分析仪的工作原理是利用红外辐射与气体分子之间的相互作用来识别和测量气体的类型和浓度。
其主要原理包括红外光源、样品室、检测器和数据处理系统。
首先,红外光源产生特定频率的红外光束,并通过光学系统引导到样品室。
红外光会穿过样品室,射向内部的待测气体。
当红外光束通过气体时,气体分子会吸收特定频率的红外光能量。
吸收的光的强度与气体中特定分子的浓度相关。
接下来,检测器会测量并比较红外光源发出的光与通过样品室后的光的差异。
任何被气体分子吸收的红外光都会使检测器输出信号产生变化。
最后,数据处理系统会分析检测器输出信号,通过对比事先设定的气体吸收谱线和实际测量的谱线,来确定待测气体的种类和浓度。
红外气体分析仪具有快速、准确和灵敏的特点,并广泛应用于环境监测、工业过程控制以及安全防护等领域。
红外线气体分析仪的检测原理与构造(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--红外线气体分析仪的检测原理与构造红外线气体分析仪利用红外线进行气体分析。
它基于待分析组分的浓度不同,吸收的辐射能不同,剩下的辐射能使得检测器里的温度升高不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电信号,从而间接测量出待分析组分的浓度。
气体分析仪由两个独立的光源分别产生两束红外线该射线束分别经过调制器,成为5Hz的射线。
根据实际需要,射线可通过一滤光镜减少背景气体中其它吸收红外线的气体组分的干扰。
红外线通过两个气室,一个是充以不断流过的被测气体的测量室,另一个是充以无吸收性质的背景气体的参比室。
工作时,当测量室内被测气体浓度变化时,吸收的红外线光量发生相应的变化,而基准光束(参比室光束)的光量不发生变化。
从二室出来的光量差通过检测器,使检测器产生压力差,并变成电容检测器的电信号。
此信号经信号调节电路放大处理后,送往显示器以及总控的CRT显示。
该输出信号的大小与被渊组分浓度成比例。
检测器是薄膜微音器。
接收室内充以样气中的待渊组分,两个接收室中间用一个薄的金属膜隔开,在两测压力不同时膜片可以变形产生位移,膜片的一侧放一个固定的圆盘型电极。
可动膜片与固定电极构成了一个电容变进器的两极。
整个结构保持严格的密封,两接收气室内的气体为动片薄膜隔开,但在结构上安置一个大小为百分之几毫米的小孔,以使两边的气体静态平衡。
辐射光束通过参比室、测量室后,进入检测器的接收室。
被接收室里的气体吸收,气体温度升高,气体分子的热运动加强,产生的热膨胀形成的压力增大。
当测量室内通入零点气(N2)时,来自两气室的光能平衡,两边的压力相等,动片薄膜维持在平衡位置,检测器输出为零。
当测量室内通入样气时,测量边进入接收室的光能低于参比边的,使测量边的压力减小,于是薄膜发生位移,故改变了两极板问的距离,也改变了电容量C。
二氧化碳在线红外检测仪是一种高精度、高效率的检测仪器,其原理基于红外光吸收原理。
红外光是一种波长较长的电磁波,而二氧化碳是一种能够吸收红外光的气体。
该检测仪通过测量特定波长的红外光通过气体样品前后的光强度的变化,来精确计算二氧化碳的浓度。
首先,传感器发射出一束特定波长的红外光,这种红外光能够与二氧化碳发生相互作用。
当这束红外光通过含有二氧化碳的气体样品时,二氧化碳分子会吸收特定波长的红外光,导致红外探测器接收到的光信号减弱。
这个吸收过程是二氧化碳分子对特定波长红外光的特征性行为,其吸收量与二氧化碳的浓度成正比。
基于这个特性,我们可以通过测量红外探测器接收到的光信号强度的变化,来确定气体样品中二氧化碳的浓度。
这种测量方法具有很高的精度和灵敏度,可以准确地检测出低浓度的二氧化碳。
同时,由于红外光的穿透性强、受其他气体干扰小等特点,使得该检测仪在复杂的环境中也能稳定运行。
此外,二氧化碳在线红外检测仪还具有快速响应、自动化操作、远程监控等功能。
它可以广泛应用于需要连续监测二氧化碳浓度的领域,如环境监测、工业生产、生物医疗等。
总之,二氧化碳在线红外检测仪基于二氧化碳分子对特定波长红外光的吸收特性,通过测量红外光的吸收量来确定二氧化碳的浓度,具有高精度、高灵敏度、稳定性好等优点。
随着技术的不断进步和应用需求的不断增加,相信这种检测仪器的应用前景将更加广阔。
二氧化碳检测仪原理
二氧化碳检测仪(CO2检测仪)是一种用于测量空气中二氧
化碳浓度的仪器。
其工作原理基于化学和物理属性的变化。
在CO2检测仪中,常用的工作原理之一是非分散红外(NDIR)光谱法。
该方法利用二氧化碳对特定波长的红外光的吸收特性。
首先,通过光源产生特定波长的红外光,然后使其通过一个空气样品室。
样品室内的空气中含有二氧化碳气体,在红外光的作用下,二氧化碳分子会吸收红外光。
接下来,使用检测器测量红外光的强度,被吸收的红外光的强度与二氧化碳浓度正相关。
最后,通过对测量值进行处理和校准,可以得到准确的二氧化碳浓度值。
除了NDIR光谱法,其他工作原理也被用于CO2检测仪。
例如,化学传感器或气体敏感电阻器(GSR)可以检测二氧化碳浓度。
这些传感器基于二氧化碳与特定的化学材料或金属氧化物之间的反应。
当二氧化碳与这些材料接触时,会引起电阻率或电位的变化,进而测量二氧化碳浓度。
总的来说,二氧化碳检测仪的工作原理是基于测量CO2与特
定物质的化学或物理性质之间的相互作用。
这些原理通过检测器转化为电信号,并经过处理和校准,最终提供准确的二氧化碳浓度数据。
红外线C02气体分析仪的结构与使用国内外的红外线CO2气体分析仪种类很多,以下介绍广东佛山分析仪器厂生产的FQ-W 型红外线CO2气体分析仪和北京分析仪器厂生产的QGD-07型红外线C02气体分析仪的结构与使用。
一、FQ型红外线气体分析仪FQ型红外线气体分析仪可分为分析和电子两部分。
1.分析部分分析部分装在主箱体内(图6),其工作原理如图7所示。
图6 红外线气体分析仪主箱体主要结构图1.薄膜微音器2.左检测室3.右检测室4.校正装置5.校正杆6.前置放大器7.调零装置8.调零旋钮9.参比气室 10.滤波室 11.工作气室 12.切光片 13.光源 14.参比电机 15.同步电机 16.光对称旋钮 17.相位旋钮图7 仪器的光原理1.光源2.平面反光镜 3、4.斜面反光镜 5.切光片 6.参比气室 7.工作气室 8.薄膜微音器由光源1发出的红外光经平面反射镜2、斜面反射镜3和4反射后分成两束能量相等的平行光束,分别通过参比气室6和工作气室7而到达检测器8的两个对称的接收室。
参比气室中充入不吸收红外光的气体(如N2)。
而工作气室中不断通过待测气样,气样中的被测成份吸收了对应波长的一部份红外光,这样到达检测电容器的两接收室的红外光能量就不相等了,其差值就是△E。
检测电容器8是由两个检测室和密封在壳体内的一个薄膜电容器构成。
薄膜电容器的一个电极是个圆形金属块,它与壳体高度绝缘,由绝缘子引出导线;另一个电极是一片金属薄膜(约5微米厚)它与壳体相连,并把两个检测室隔开。
检测电容器内充被测气体,并加以严格密封。
经过参比气室进入左检测室的红外光能量为E0,经过工作室进入右检测室的红外光能量为E,左右两个检测室内的气体分别吸收红外光E0和E,受热膨胀,由于E0大于E,故左检测室的温度稍高于右检测室的温度。
按气体方程PV=RT,左检测室的压力将稍高于右检测室的压力(其差为△P),这样薄膜将被迫凸起,薄膜电萜鞯娜萘勘湫。
红外线气体分析仪原理
红外线气体分析仪通过测量物质对特定波长的红外辐射的吸收特性来分析气体的成分。
其工作原理基于分子吸收红外辐射的量与分子的浓度成正比关系。
红外线气体分析仪由一个红外灯、一组滤光器和一个红外线探测器组成。
红外灯产生特定波长的红外辐射,经过滤光器过滤掉其他波长的光线后,红外辐射穿过待测气体。
当红外辐射与气体中特定分子发生相互作用时,分子会吸收红外辐射的一部分能量。
红外线探测器接收经过气体样品的红外辐射,并将其转化为电信号。
红外线探测器根据接收到的电信号强度来确定气体中特定分子的吸收量。
通过比较样品气体与基准气体的吸收量差异,可以准确测量待测气体中特定分子的浓度。
为了提高测量的准确性,红外线气体分析仪通常采用双光束设计。
它将红外辐射分为两束,一束作为参考光束,经过一个参比腔室,另一束作为待测光束,经过被测样品。
待测光束和参考光束分别通过两个红外线探测器,然后将两个信号进行比较,从而消除光源和红外探测器的非均匀性对测量结果的影响。
红外线气体分析仪广泛应用于环境监测、工业过程控制、燃气分析等领域。
它具有高灵敏度、快速响应、测量范围广、无污染等优点,并且对大多数气体都有良好的适应性。