检出限测定限最佳测定范围校准曲线及分析空白(精)
- 格式:doc
- 大小:61.50 KB
- 文档页数:13
检出限测定方法
依照我站实验室实质情况,检出限测定方法以下所述:
1.一般分光光度法
按依旧品解析的全部步骤,重复 n(≥ 7)次空白试验,将各测定结果换算为样品中浓度或含量,计算 n 次平行测定的标准偏差,按以下公式计算方法检出限。
式中: MDL——方法检出限;
n——样品的平行测定次数;
t——自由度为 n -1 ,置信度为 99%时的 t 分布(单侧);
S——次平行测定的标准偏差。
实质操作中,一般取7 次,即 MDL=*S。
若是空白试验的测定值过高,或变动较大时,无法计算检出限。
因此,本方法计算的检出限以下述条件为前提:任意测定值之间可赞同的差异范围为“空白试验
测定值的均值±估计检出限的1/2 ”以内。
2.气相色谱法及分光光度法
按依旧品解析的全部步骤,对浓度值或含量为估计方法检出限值2~5 倍的样品进行≥ 7)次平行测定。
实质操作中,可取曲线第一个点(一般为检出限的 4 倍,最大不高出检出限的10 倍)。
计算 n 次平行测定的标准偏差,计算检出限。
MDL值计算出来后,需判断其合理性。
对于针对单一组分的解析方法,若是样品浓度高出计算出的方法检出限10 倍,也许样品浓度低于计算出的方法检出限,则都需要调整样品浓度重新进行测定。
3.离子选择电极法
当校准曲线的直线部分外延的延长线与经过空白电位且平行于浓度轴的直线相交时,其交点所对应的浓度值即为该离子选择电极法的检出限。
分析化学中的检出限、测定限与检测限杜进祥(化学工业出版社,北京100029)Clarification paper on detection limit,determination limit and detectability of analytical chemistryDu Jinxiang(Chemical Industry Press,Beijing 100029)检出限(detection limit,limit of detection)、测定限(determination limit,limit of determination)与检测限(detectability)是分析化学中常见的名词术语,近年来,国内外一些文献多有论述[1~6]。
但目前国内出版物中对三者的定义、使用仍存在一些混乱现象,有时甚至将三者混为一谈,使深入讨论或比较数据产生困难。
一、检出限与测定限查“detection limit”或“limit of detection”对应的中文,有“检测极限[7~13]”,“测定范围[14]”,“检测限[15~17]”,“检出(下)限[15]”,“检测下限[15]”,“检出极限[18]”等多种译法;查“determination limit”或“limit of determination”对应的中文,有“定量下限[10]”,“定量界限[10]”,“定量测定下限[19]”,“测定下限[20]”等译法。
实际上,文献[20~25]曾对检出限与测定限的名称、定义展开过讨论。
1991年8月,全国自然科学名词审定委员会公布的《化学名词》[26]规定了检出限(detection limit,编号03.0090)与测定限(determination limit,编号03.0091),并得到认可[12,13,27~29]。
国际纯粹与应用化学联合会(IUPAC)1997年通过,1998年发表的《分析术语纲要》(IUPAC Compendium of Analytical Nomenclature)[30]中规定:“检出限以浓度(或质量)表示,是指由特定的分析步骤能够合理地检测出的最小分析信号xL求得的最低浓度cL(或质量qL)”。
检出限、测定限、最佳测定范围区别检出限1检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。
所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。
检出限除了与分析中所用试剂和水的空白有关外,还与仪器的稳定性及噪声水平有关。
在灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。
显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。
则:D = 2N / S式中:N——噪声(mV或A);S――检测器灵敏度;D――检出限,其单位随S不同也有三种:Dg=2N / Sg , 单位为mg/mlDv=2N / SV , 单位为ml/mlDt=2N / St , 单位为g/s有时也用最小检测量(MDA )或最小检测浓度(MDC )作为检测限。
它们分别是产生两倍噪声信号时,进入检测器的物质量(g )或浓度(mg∕ml)。
不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。
灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。
从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。
他是分析方法的一个综合性的重要计量参数。
2检出限的计算方法1 )在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。
这里的零浓度样品是不含待测物质的样品。
D.L = 4.6 σ式中:σ—空白平行测定(批内)标准偏差(重复测定20次以上)。
2)国际纯粹和应用化学联合会(IUPAC )对分析方法的检出限 D.L 作如下规定。
在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。
1.目的规范公司实验室日常工作中使用化学分析方法的进行检测所出具报告书中的检出限、定量限、报告限的定义及其确定方法。
2.范围所有使用化学分析方法进行检测的相关科室。
3.内容3.1检出限检出限为某特定分析方法在给定的置信度内可从样品中检测出待测物质的最小浓度或最小量。
可分为测量方法检出限和仪器检出限。
两种检出限相互关联,但不相等。
3.1.1方法检出限方法检出限(D.L)指在通过某一完整分析方法全部测定过程后(包括样品预处理过程),待测物质产生的信号能以99%置信度区别于空白样品而被测定出来的最低浓度。
方法检出限按照以下方法确定:测定20个空白样品,计算空白信号的标准偏差Sσ。
D.L=KSσ/a式中:Sσ—空白多次测得信号的标准偏差;a—方法的灵敏度(即校准曲线的斜率)。
取K=3,计算检出限D.L3.1.2仪器检出限仪器检出限指分析仪器能够检测的被分析物的最低量或最低浓度,这个浓度或量与特定的仪器能够从背景噪音中辨别的最小响应信号相对应。
仪器检出限与方法检出限的区别在于仪器检出限不考虑任何样品制备步骤的影响,一般以溶剂空白测定检出限,因此,仪器检出限值总是比方法检出限低。
仪器检出限反映的是仪器本身的检出能力。
其确定方法为:采用纯水,在一定时间内测定12次以上,以3倍标准偏差对应的含量或浓度表示。
3.2定量限定量限是指样品中被测物能被定量测定的最低量,其测定结果应具有一定的准确度。
定量限体现了分析方法是否具备灵敏的定量检测能力。
定量限的两端称为定量下限和定量上限。
3.2.1定量下限在测定误差能满足预定要求的前提下,用特定方法能准确地定量测定待测物质的最小浓度或量,称为该方法的定量下限。
定量下限反映出分析方法能准确地定量测定低浓度水平待测物质的极限可能性。
在没有(或消除)系统误差的前提下,他受精密度要求的限制(精密度通常以相对标准偏差表示)。
分析方法的精密度要求越高,测定下限高于检出限越多。
一般情况下以3.3倍方法检出限的浓度作为定量下限浓度,其测定值的相对标准偏差应小于或等于10%。
检出限、测定限、最佳测定范围区别检出限1检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。
所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。
检出限除了与分析中所用试剂和水的空白有关外,还与仪器的稳定性及噪声水平有关。
在灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。
显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。
则:D = 2N / S式中:N——噪声(mV或A);S——检测器灵敏度;D——检出限,其单位随S不同也有三种:Dg=2N / Sg,单位为mg/mlDv=2N / Sv,单位为ml/mlDt=2N / St,单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。
它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。
不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。
灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。
从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。
他是分析方法的一个综合性的重要计量参数。
2检出限的计算方法1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。
这里的零浓度样品是不含待测物质的样品。
D.L = 4.6σ式中:σ—空白平行测定(批内)标准偏差(重复测定20次以上)。
2)国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限D.L 作如下规定。
在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。
算出空白观测值的平均值X b和标准偏差S b。
检出限、测定限、最佳测定范围、校准曲线及分析空白第一节:检出限1.检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。
所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。
检出限除了与分析中所用试剂和水的空白有关外,还与仪器的稳定性及噪声水平有关。
在灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。
显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。
则:D = 2N / S式中:N---噪声(mV或A);S---检测器灵敏度;D---检出限,其单位随S不同也有三种:Dg=2N / Sg, 单位为mg/mlDv=2N / Sv, 单位为ml/mlDt=2N / St, 单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。
它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。
不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。
灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。
从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。
他是分析方法的一个综合性的重要计量参数。
2. 检出限的计算方法1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。
这里的零浓度样品是不含待测物质的样品。
D.L = 4.6σ式中:σ—空白平行测定(批内)标准偏差(重复测定20次以上)。
2) 国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限D.L作如下规定。
在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。
检出限检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。
所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。
检出限除了与分析中所用试剂和水的空白有关外,还与仪器的稳定性及噪声水平有关。
在灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。
显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。
则:D = 2N / S式中:N——噪声(mV或A);S——检测器灵敏度;D——检出限,其单位随S不同也有三种:Dg=2N / Sg, 单位为mg/mlDv=2N / Sv, 单位为ml/mlDt=2N / St, 单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。
它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度。
(mg/ml).等往往用检出限表示检测器NPDECD不少高灵敏度检测器,如、FID、的性能。
灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。
从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。
他是分析方法的一个综合性的重要计量参数。
检出限的计算方法2)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为1时,样品测定值与零浓度样品的测定值有显著性差异即为检出限95%()。
这里的零浓度样品是不含待测物质的样品。
= σ式中:σ—空白平行测定(批内)标准偏差(重复测定20次以上)。
2) 国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限作如下规定。
在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。
算出空白观测值的平均值X和标准偏差S。
在一定置信概率下,被检bb出的最小测量值X以下式确定:L X = X+ K'S b Lb式中:X——空白多次测得信号的平均值;b S空白多次测得信息的标准偏差;—— bK'——根据一定置信水平确定的系数。
分析化学中的检出限、测定限与检测限引自“分析化学中的检出限、测定限与检测限(化学工业出版社,北京 100029)Clarification paper on detection limit,determination limit and detectability of analytical chemistryDu Jinxiang(Chemical Industry Press,Beijing 100029)”检出限(detection limit,limit of detection)、测定限(determination limit,limit of determination)与检测限(detectability)是分析化学中常见的名词术语,近年来,国内外一些文献多有论述[1~6].但目前国内出版物中对三者的定义、使用仍存在一些混乱现象,有时甚至将三者混为一谈,使深入讨论或比较数据产生困难.一、检出限与测定限查“detection limit”或“limit of detection”对应的中文,有“检测极限[7~13]”,“测定范围[14]”,“检测限[15~17]”,“检出(下)限[15]”,“检测下限[15]”,“检出极限[18]”等多种译法;查“determination limit”或“limit of determination”对应的中文,有“定量下限[10]”,“定量界限[10]”,“定量测定下限[19]”,“测定下限[20]”等译法。
实际上,文献[20~25]曾对检出限与测定限的名称、定义展开过讨论。
1991年8月,全国自然科学名词审定委员会公布的《化学名词》[26]规定了检出限(detection limit,编号03.0090)与测定限(determination limit,编号03.0091),并得到认可[12,13,27~29]。
国际纯粹与应用化学联合会(IUPAC)1997年通过,1998年发表的《分析术语纲要》(IUPAC Compendium of Analytical Nomenclature)[30]中规定:“检出限以浓度(或质量)表示,是指由特定的分析步骤能够合理地检测出的最小分析信号xL求得的最低浓度cL(或质量qL)”。
检出限、测定下限和校准曲线最低浓度点是实际工作中容易混淆的几个概念,联系检测工作实际,从所述概念的计算入手,进行了区分和应用方面的探讨。
定义检出限(Limit of detection或minimum detectablity)是指某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小值。
所谓“检出”是判定样品中存有浓度高于空白的待测物质。
“检出”是定性概念,在测定限(Limit of determination)范围内才可准确定量测定,测定限两端称测定下限或测定上限。
测定下限是指在测定误差能满足预定要求的前提下,用特定方法能准确地定量测定待测物质的最小浓度或量。
在定量测定中,大部分实验要借助于校准曲线来确定待测物质的浓度或量。
校准曲线(Calibration curve)是由一组已知浓度的梯度标准溶液浓度值和相应的仪器响应值在坐标图上形成的点连成的曲线。
校准曲线最低浓度点是曲线上已知的最低浓度值及其仪器响应值构成的点,它和其他系列已知浓度标准溶液浓度点共同构成校准曲线,一般情况下,人们所说的校准曲线最低浓度点,这一概念含有空白以外最低浓度值之意,对这一概念的关注,也多忽略其响应值而重在其浓度值方面。
区别检出限的计算依分析方法不同而不同,有关资料规定的方法有数种,其计算原理都是在规定置信水平时,以样品测定值与零浓度样品的测定值有显著性差异为检出限(以L表示)。
如:(1)《全球环境监测系统水检测操作指南》规定:在给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限L。
L=4.6σWb其中,σWb为空白平行测定标准偏差(空白测定次数大于20)。
(2) 国际纯粹和应用化学联合会(IUPAC)对光学分析方法规定:L=k’Sb/k其中,Sb为空白多次测得信号的标准偏差(空白测定次数大于20);k’为根据一定置信水平确定的系数;k为方法的灵敏度#即校准曲线的斜率%。
IUPAC(1975年)建议:光谱化学分析取k’=3。
检出限、测定限、最佳测定范围、校准曲线及分析空白第一节:检出限1.检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。
所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。
检出限除了与分析中所用试剂和水的空白有关外,还与仪器的稳定性及噪声水平有关。
在灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。
显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。
则:D = 2N / S式中:N---噪声(mV或A);S---检测器灵敏度;D---检出限,其单位随S不同也有三种:Dg=2N / Sg, 单位为mg/mlDv=2N / Sv, 单位为ml/mlDt=2N / St, 单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。
它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。
不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。
灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。
从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。
他是分析方法的一个综合性的重要计量参数。
2. 检出限的计算方法1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。
这里的零浓度样品是不含待测物质的样品。
D.L = 4.6σ式中:σ—空白平行测定(批内)标准偏差(重复测定20次以上)。
2) 国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限D.L作如下规定。
在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。
分析化学中的检出限、测定限与检测限杜进祥(化学工业出版社,北京100029)Clarification paper on detection limit,determination limit and detectability of analytical chemistryDu Jinxiang(Chemical Industry Press,Beijing 100029)检出限(detection limit,limit of detection)、测定限(determination limit,limit of determination)与检测限(detectability)是分析化学中常见的名词术语,近年来,国内外一些文献多有论述[1~6]。
但目前国内出版物中对三者的定义、使用仍存在一些混乱现象,有时甚至将三者混为一谈,使深入讨论或比较数据产生困难。
一、检出限与测定限查“detection limit”或“limit of detection”对应的中文,有“检测极限[7~13]”,“测定范围[14]”,“检测限[15~17]”,“检出(下)限[15]”,“检测下限[15]”,“检出极限[18]”等多种译法;查“determination limit”或“limit of determination”对应的中文,有“定量下限[10]”,“定量界限[10]”,“定量测定下限[19]”,“测定下限[20]”等译法。
实际上,文献[20~25]曾对检出限与测定限的名称、定义展开过讨论。
1991年8月,全国自然科学名词审定委员会公布的《化学名词》[26]规定了检出限(detection limit,编号03.0090)与测定限(determination limit,编号03.0091),并得到认可[12,13,27~29]。
国际纯粹与应用化学联合会(IUPAC)1997年通过,1998年发表的《分析术语纲要》(IUPAC Compendium of Analytical Nomenclature)[30]中规定:“检出限以浓度(或质量)表示,是指由特定的分析步骤能够合理地检测出的最小分析信号xL求得的最低浓度cL(或质量qL)”。
检出限、测定限、最佳测定范围区别检出限1检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。
所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。
检出限除了与分析中所用试剂和水的空白有关外,还与仪器的稳定性及噪声水平有关。
在灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。
显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。
则:D = 2N / S式中:N——噪声(mV或A);S——检测器灵敏度;D——检出限,其单位随S不同也有三种:Dg=2N / Sg,单位为mg/mlDv=2N / Sv,单位为ml/mlDt=2N / St,单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。
它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。
不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。
灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。
从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。
他是分析方法的一个综合性的重要计量参数。
2检出限的计算方法1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。
这里的零浓度样品是不含待测物质的样品。
D.L = 4.6σ式中:σ—空白平行测定(批内)标准偏差(重复测定20次以上)。
2)国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限 D.L 作如下规定。
在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。
算出空白观测值的平均值Xb 和标准偏差Sb。
环境监测技术理论考试试卷(模拟卷)及答案一、填空题(20个空格×分=10分)1.在环境空气采样期间,应记录流量、时间、气样温度和压力等参数。
2.钼酸铵分光光度法测定水中总磷时,如显色时室温低于13o C,可在20o C-30o C水浴中显色 15 min.3.应用分光光度法进行试样测定时,选择最适宜的测定浓度可减少测定误差。
一般来说,吸光度值在范围,测定误差相对较小。
理论上,吸光度值是时,浓度测量的相对标准偏差最小。
4.在气相色谱中,保留值实际上反映的是组分和固定相分子间的相互作用力。
5.在地表水采样断面同一条垂线上,水深5m-10m时,设2个采样点,即水面下 m处和河底上处;若水深≤5m时,采样点在水面下处。
6.环境空气手工监测时,采样仪器临界限流孔流量每月校准1次,流量误差应小于5%。
7.空气动力学当量直径≤100μm 的颗粒物,称为总悬浮颗粒物,简称 TSP ;空气动力学当量直径≤10μm 的颗粒物,称为可吸入颗粒物,简称 PM10。
8.大气污染物无组织排放监测,一般在排放源上风向设1个参照点,在下风向最多设4个监控点。
9.GC-MS的进样口对真空要求最高。
10.土壤混合样的采集方法主要有四种,即对角线法、棋盘式法、梅花点法和蛇形法。
11.测量噪声时,要求的气象条件为无雨雪、无雷电天气,风速5m/s。
12.一般情况下,工业企业厂界噪声监测点位应选在法定厂界外1m,高度以上。
监测时,如是稳态噪声,则采取1min的等效声级。
13.等离子体发射光谱通常由化学火焰、电火花、电弧、激光和各种等离子体光源激发而获得。
14.采集用于监测细菌学指标水样的玻璃瓶,在洗涤干燥后,要在160o C-170o C干热灭菌2h或高压蒸汽121o C灭菌20min。
不能使用加热灭菌的塑料采样瓶应浸泡在%的过氧乙酸中10分钟进行低温灭菌。
15.实验室质量体系的内部审核一般每年不少于1次;管理评审每年至少组织1次。
检出限、测定限、最佳测定范围、校准曲线及分析空白第一节:检出限1.检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。
所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。
检出限除了与分析中所用试剂和水的空白有关外,还与仪器的稳定性及噪声水平有关。
在灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。
显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。
则:D = 2N / S式中:N---噪声(mV或A);S---检测器灵敏度;D---检出限,其单位随S不同也有三种:Dg=2N / Sg, 单位为mg/mlDv=2N / Sv, 单位为ml/mlDt=2N / St, 单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。
它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。
不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。
灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。
从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。
他是分析方法的一个综合性的重要计量参数。
2. 检出限的计算方法1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。
这里的零浓度样品是不含待测物质的样品。
D.L = 4.6σ式中:σ—空白平行测定(批内)标准偏差(重复测定20次以上)。
2) 国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限D.L作如下规定。
在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。
算出空白观测值的平均值X b和标准偏差S b。
在一定置信概率下,被检出的最小测量值X L 以下式确定:X L= X b+ K’S b式中:X b——空白多次测得信号的平均值;S b ——空白多次测得信息的标准偏差;K’——根据一定置信水平确定的系数。
与X L-X b (即K’ S b)相应的浓度或量即为检出限:D.L = X L- X b/ K = k’S b/ K式中:k ——方法的灵敏度(即校准曲线的斜率)。
为了评估X b和S b,实验次数必须至少20次。
1975年,IUPAC建议对光谱化学分析法取k’=3。
由于低浓度水平的测量误差可能不遵从正态分布,且空白的测定次数有限,因而与k’=3相应的置信水平大约为90%。
此外,尚有将K’取为4、4.6、5及6的建议。
3)美国EPASW-846中规定方法检出限:MDL=3.143δ(δ重复测定7次)4)在某些分光光度法中,以扣除空白值后的与0.01吸光度相对应的浓度值为检出限。
5)气相色谱分析的最小检测量系指检测器恰能产生与噪声相区别的响应信号时所需进入色谱柱的物质的最小量,一般认为恰能辨别的响应信号,最小应为噪声的两倍。
最小检测浓度系指最小检测量与进样量(体积)之比。
6)某些离子选择电极法规定:当校准曲线的直线部分外延的延长线与通过空白电位且平行于浓度轴的直线相交时,其交点所对应的浓度值及为该离子选择电极法的检出限。
光度分析中,虽然吸光度最小测读值为0.001,灵敏度也以A=0.001所相应的被测物浓度表示,但实际上惯常以A=0.05相应的被测物浓度作为有充分置信度的测定限,即最小能够可靠测定的浓度。
这是因为,在吸光度A接近零的情况下,测定值与真实值之比即相对误差趋向无限大。
其次,由于比色皿的成对性不易做到完全匹配,尤其是使用已久的比色皿的成对性不易保证,因此吸光度很小的测量值在不同操作者、不同试验室之间常会不一致,除非操作者很有经验,十分注意比色皿成对性对测量的影响,并在每次测量时予以试验校正。
第二节测定限测定限为定量范围的两端,分为测定上限与测定下限。
1.测定下限在测定误差能满足预定要求的前提下,用特定方法能准确地定量测定待测物质的最小浓度或量,称为该方法的测定下限。
测定下限反映出分析方法能准确地定量测定低浓度水平待测物质的极限可能性。
在没有(或消除了)系统误差的前提下,他受精密度要求的限制(精密度通常以相对标准偏差表示)。
分析方法的精密度要求越高,测定下限高于检出限越多。
美国EPASW-846中规定4MDL为定量下限(RQL),即4倍检出限浓度作为测定下限,其测定值的相对标准偏差约为10%。
日本JIS规定定量下限为10倍的MDL。
2.测定上限在限定误差能满足预定要求的前提下,用特定方法能够准确地定量测定待测物质的最大浓度或量,称为该方法的测定上限。
对没有(或消除了)系统误差的特定分析方法的精密度要求不同,测定上限也将不同。
测定限对于定量分析,进一步计算才能得到与分析物有关的值(例如,各个结果的平均值)。
因此,条件更加苛刻,所以测定限总是高于检出限。
3.检测限有三种常用的表示方式(1)仪器检测下限可检测仪器的最小讯号,通常用信噪比来表示,当信号与噪声之比大于等于3时,相当于信号强度的试样浓度,定义为仪器检测下限。
(2)方法检测下限即某方法可检测的最低浓度。
通常用低浓度曲线外推法可求的方法检测下限。
(3)样品检测下限即相对于空白可检测的样品最小含量。
样品检测下限定义为:其信号等于测量空白溶液的信号的标准偏差的3倍时的浓度。
检测下限是选择分析方法的重要因素。
样品检测下限不仅与方法检测下限有关,而且与空白样品中空白含量以及空白波动情况有关。
只有当空白含量为零时,样品检测下限等于方法检测下限。
然而,空白含量往往不等于零,空白大小受环境对样品的污染,试剂纯度、水质纯度、容器的质地及操作等因素的影响。
因此,由外推法可求得方法检测下限可能很低,但由于空白含量的存在,以及空白含量的波动,样品检测下限可能要比方法检测下限大得多。
从实用中考虑,样品检测下限较为有用和切合实际。
第三节最佳测定范围1.最佳测定范围(也称有效测定范围)。
指在限定误差能满足预定要求的前提下,特定方法的测定下限至测定上限之间的浓度范围。
在此范围内能够准确地定量测定待测物质的浓度或量。
最佳测定范围应小于方法的适应范围。
对测量结果的精密度(通常以相对标准偏差表示)要求越高,相应的最佳测定范围越小。
分析方法特性关系如图所示。
低浓度最佳测定范围高浓度适用范围分析方法特性关系图2.方法的线性范围方法的线性范围是指信号与样品浓度呈线性的工作曲线直线部分。
通常把相当于10倍空白的标准偏差相应的浓度定为方法的线性范围的定量检测下限。
取工作曲线中高浓度时,弯曲处作为方法的线性范围的定量检测上限。
好的分析方法要有宽的线性范围。
有的分析方法线性范围只有一个数量级,有的分析方法线性范围可达5~6个数量级。
同一分析方法可用常量、微量、痕量的物质分析。
第四节校准曲线校准曲线包括标准曲线和工作曲线,前者用标准溶液系列直接测量,没有经过预处理过程,这对于样品往往造成较大误差;而后者所使用的标准溶液经过了与样品相同的消解、净化、测量等全过程。
凡应用校准曲线的分析方法,都是在样品测得信号值后,从校准曲线上查得其含量(或浓度)。
因此,绘制准确的校准曲线,直接影响到样品分析结果的准确与否。
此外,校准曲线也确定了方法的测定范围。
1.校准曲线的绘制用一系列被测物标准溶液,按照标准方法规定的步骤,将被测物转变为有色溶液。
制备好的标准系列和空白,在方法选定的波长下,测定吸光度。
已被测物浓度为横坐标,吸光度为纵坐标,绘制校准曲线。
1)对标准系列,溶液以纯溶剂为参比进行测量后,应先作空白校正,然后绘制标准曲线;2)标准溶液一般可直接测定,但如试样的预处理较复杂致使污染或损失不可忽略时,应和试样同样处理后再测定。
3)校准曲线的斜率常随环境温度、试剂批号和贮存时间等实验条件的改变而变动。
因此,在测定试样的同时,绘制校准曲线最为理想,否则应在测定试样的同时,平行测定零浓度和中等浓度标准溶液各两份,取均值相减后与原校准曲线上的相应点核对,其相对差值根据方法精密度不得大于5%~10%,否则应重新绘制校准曲线。
2. 校准曲线的检验1)线性检验: 即检验校准曲线的精密度。
对于以4~6个浓度单位所获得的测量信号值绘制的校准曲线,分光光度法一般要求其相关系数 | r | ≥0.9990,否则应找出原因并加以纠正,重新绘制合格的校准曲线。
2)截距检验:即检验校准曲线的准确度,在线性检验合格的基础上,对其进行线性回归,得出回归方程 y= a+bx ,然后将所得截距a与0作t检验,当取95%置信水平,经检验无显著性差异时,a可做0处理,方程简化为y= bx,移项得x=y/b。
在线性范围内,可代替查阅校准曲线,直接将样品测量信号值经空白校正后,计算出试样浓度。
当a与0有显著性差异时,表示校准曲线的回归方程计算结果准确度不高,应找出原因予以校正后,重新绘制校准曲线并经线性检验合格。
在计算回归方程,经截距检验合格后投入使用。
回归方程如不经上述检验和处理,就直接投入使用,必将给测定结果引入差值相当于解决a的系统误差。
3) 斜率检验: 即检验分析方法的灵敏度,方法灵敏度是随实验条件的变化而改变的。
在完全相同的分析条件下,仅由于操作中的随机误差导致的斜率变化不应超出一定的允许范围,此范围因分析方法的精度不同而异。
例如,一般而言,分子吸收分光光度法要求其相对差值小于5%,而原子吸收分光光度法则要求其相对差值小于10%等等。
3. 校准曲线的控制被测物转变为有色溶液的反应称为显色反应或发色反应。
显色反应的介质PH条件、显色剂用量、显色反应的时间和温度、为消除共存物干扰而加入的掩蔽剂、甚至加试剂的顺序,都要按照方法步骤的要求执行。
有时,标准系列虽然不像实际试样那样组成复杂,但仍要求与试样进行同样的处理步骤,以便控制校准曲线上的数据点的空白、回收率等因素。
建立校准曲线时,测量吸光度的参比有两种选择。
第一种方法用纯溶剂作参比,两个比色皿都放溶剂时,“样品比色皿”的吸光度测定值为比色皿成对性校正值,此后所有样品吸光度测定值都须扣除此值,进行校正。
然后,以纯溶剂为参比,测定空白及标准系列的吸光度,绘制校准曲线。
第二种方法直接用空白为参比。
当两个比色皿都放空白时,测定比色皿成对性校正值,然后测定标准系列的吸光度,绘制校准曲线。
两种方法得到的两条校准曲线互相平行,但第一种方法可测定空白的水平,后一种方法不能测定空白,理论上校准曲线通过原点。
若空白为零,两条校准曲线重合。
无论用什么作参比,实样测定时应该使用与建立校准曲线相同的比色皿和同样的参比。