第1章 量子力学基础知识
- 格式:ppt
- 大小:3.12 MB
- 文档页数:65
《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。
1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。
黑色物体或开一小孔的空心金属球近似于黑体。
黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。
★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。
按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。
按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。
Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。
经典理论无论如何也得不出这种有极大值的曲线。
• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。
• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。
能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。
第一章量子力学基础知识总结微观粒子的运动特征1.黑体辐射和能量量子化●黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。
●黑体辐射的能量量子化公式:●普朗克常数(h=6.626×10-34 J·s)2.光电效应和光子学说●只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子。
●不同金属的临阈频率不同。
●随着光强的增加,发射的电子数也增加,但不影响光电子的动能。
●增加光的频率,光电子的动能也随之增加●式中h为Planck常数,ν为光子的频率●m = h /c2所以不同频率的光子有不同的质量。
●光子具有一定的动量(p)P = mc = h /c = h/λ●光的强度取决于单位体积内光子的数目,即光子密度。
Ek = h -W3.实物微粒的波力二项性● E = h v , p = h / λ●光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性4.不确定度关系●具有波动性的粒子其位置偏差(△x )和动量偏差(△p )的积恒定.,有以下关系:量子力学基本假设1、波函数和微观粒子的状态●波函数ψ和微观粒子的状态●合格波函数的条件2、物理量和算符●算符:对某一函数进行运算,规定运算操作性质的符号。
如:sin,log等。
线性算符:Â( 1+ 2)=Â 1+Â 2自轭算符:∫ 1*Â 1 d =∫ 1(Â 1 )*d 或∫ 1*Â 2 d =∫2(Â 1 )*d3、本征态、本征值和Schrödinger方程●A的本征方程Aψ= aψa 称为力学量算符 A 的本征值,ψ称为A的本征态或本征波函数,4、态叠加原理●若 1, 2… n为某一微观体系的可能状态,由它们线性组合所得的 也是该体系可能的状态。
5、Pauli(泡利)原理●在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。
结构化学知识点归纳结构化学知识点归纳根据北京大学出版社周公度编写的“结构化学”总结第一章量子力学基础知识一、微观粒子的运动特征h1. 波粒二象性:E =h ν, p =λ2. 测不准原理:∆x ∆p x ≥h , ∆y ∆p y ≥h , ∆z ∆p z ≥h , ∆t , ∆E ≥h 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x , y , z , t ) 来描述,它包括体系的全部信息。
这一函数称为波函数或态函数,简称态。
不含时间的波函数ψ(x , y , z ) 称为定态波函数。
在本课程中主要讨论定态波函数。
由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。
在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψd τ为空间某点附近体积元d τ中电子出现的几率。
对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。
波函数ψ可以是复函数,2=ψ*⋅ψ合格(品优)波函数:单值、连续、平方可积。
2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。
算符:作用对象是函数,作用后函数变为新的函数。
线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。
ˆ(c ψ+c ψ) =c A ˆˆψ A 11221ψ1+c 2A 2*ˆˆψ) *d τ的算符。
(A ψ1)d τ=∫ψ2(A 自厄算符:满足∫ψ21自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。
ˆ作用于某一状态函数ψ,等于某一常数a 乘3. 假设3:若某一物理量A 的算符Aˆψ=a ψ,那么对ψ所描述的这个微观体系的状态,物理量A 具有确以ψ,即:Aˆ的本证值,ψ称为A ˆ的本证函数。
福师《结构化学》第一章量子力学基础和原子结构课堂笔记◆主要知识点掌握程度了解测不准关系,掌握和的物理意义;掌握一维势箱模型方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。
◆知识点整理一、波粒二象性和薛定谔方程1.物质波的证明德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为:对于低速运动,质量为m的粒子:其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过常数h联系起来,普朗克常数焦尔·秒。
实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。
λν量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。
如微观体系的能量和角动量等物理量就是量子化的,能量的改变为ν的整数倍。
2.测不准关系:内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”:(y、z方向上的分量也有同样关系式)ΔX是物质位置不确定度,Δ为动量不确定度。
该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。
对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。
3.波函数的物理意义——几率波实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。
1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。
这规律表明:对大量电子而言,在衍射强度大的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。
结构化学基础总结第一章:量子力学基础知识一、3个实验1、黑体辐射实验:(1)黑体:被认为是可以吸收全部外来辐射的物体,是理想的辐射体。
理想黑体可以吸收所有照射到它表面的电磁辐射,并将这些辐射转化为热辐射,其光谱特征仅与该黑体的温度有关,与黑体的材质无关。
可见光:400-700nm(2)假设:黑体吸收或发射辐射的能量是不连续的,而是分子一份一份的,即,量子化的。
E=hμ2、光电效应实验和Einstein光子学说:光量子化和光的波粒二象性本质。
(1)Einstein提出来了光量子(光子)。
波的性质:衍射、干涉。
E=hμ粒子的性质:反射、折射。
P=h/λ光子的动能与入射光的频率成正比,与光的强度无关。
(2)Heisenberg不确定度关系:Δq∙Δp≥ℏΔq坐标不确定量;Δp动量不确定量;q广义坐标单缝衍射:某粒子坐标确定得愈精确,其相应动量就愈不确定。
h可作为区分宏、微观粒子的标准:宏观h=0,微观h不能看作0。
3、氢原子光谱与Born氢原子模型:(1)氢原子光谱:指的是氢原子内之电子在不同能级跃迁时所发射或吸收不同波长、能量之光子而得到的光谱。
氢原子光谱为不连续的线光谱,自无线电波、微波、红外光、可见光、到紫外光区段都有可能有其谱线。
根据电子跃迁的后所处的能阶,可将光谱分为不同的线系。
(2)在卢瑟福模型的基础上,玻尔提出了电子在核外的量子化轨道,解决了原子结构的稳定性问题,描绘出了完整而令人信服的原子结构学说。
定态假设:原子的核外电子在轨道上运行时,只能够稳定地存在于具有分立的、固定能量的状态中,这些状态称为定态(能级),即处于定态的原子能量是量子化的。
此时,原子并不辐射能量,是稳定的。
激发态:原子受到辐射、加热或通电时,获得能量后电子可以跃迁到离核较远的轨道上去,即电子被激发到高能量的轨道上,这时原子处于激发态。
处于激发态的电子不稳定,可以跃迁到离核较近的轨道上,同时释放出光子。
二、量子力学基本假设1、假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。