高等数学常见中值定理证明及应用
- 格式:doc
- 大小:324.00 KB
- 文档页数:10
七大中值定理的理解与运用在高等数学内容中,七大中值定理(零点定理、介值定理、三大微分中值定理、泰勒定理与积分中值定理)是学生在学习过程中认为最难的部分。
七大定理的难主要在于难理解、难应用。
在历次考试,包括研究生入学考试中,与中值有关的问题一直是考试中得分最少的题,因此如何让学生更好的理解与掌握定理,灵活有效的使用定理,一直是我在授课过程中觉得比较难把握的。
在授课和答疑过程中也曾经积累了一些想法,但是这些想法都比较零碎。
乐老师在培训过程中对中值定理证明问题中辅助函数构造的讲解,对我帮助最大。
借这次机会将我对七大定理教学过程中的体会总结如下。
第一,七大定理的归属。
零点定理与介值定理属于闭区间上连续函数的性质。
三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。
积分中值定理属于积分范畴,但其实也是微分中值定理的推广。
第二,对使用每个定理的体会。
学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。
关键在于是对哪个函数在哪个区间上使用哪个中值定理。
1.使用零点定理问题的基本格式是“证明方程f(x)=0在a,b 之间有一个(或者只有一个)根”。
从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。
应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。
2.介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。
3.用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。
正如乐老师在培训过程中所说,应用微分中值定理主要难点在于构造适当的函数。
曾经在以往授课过程中总结了一点构造函数的方法,这次经过培训,我对构造函数的方法有了进一步的掌握,感觉乐老师讲述的方法便于记忆,更便于学生理解。
第六讲 中值定理一、罗尔(Rolle)定理1、引理(费马引理) 设函数()f x 在点0x 的某邻域0()U x 内有定义,若()f x 在点0x 可导,且0()x U x ∀∈有0()()f x f x ≤ (或0()()f x f x ≥).则0()0f x '=.2、定理(罗尔定理) 若函数()f x 满足:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()()=f a f b , 则至少存在一点(,)∈a b ξ,使()0'=f ξ3、几何意义:例1 验证函数3()3=-f x x x在[内至少存在一点ξ,使得()0'=f ξ,并求出ξ的具体位置例 2 设,,a b c 是任意实数,证明32432ax bx cx a b c ++=++在(0,1)内至少有一个实根.二、拉格朗日(Lagrange)中值定理1、定理(拉格朗日中值定理) 如果函数()f x 满足:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导,则至少存在一点(,)∈a b ξ,使得: ()()()-'=-f b f a f b a ξ. 2、几何意义:例3 证明不等式ln --<<b a b b a b a a (0)<<a b . 3. 两个重要推论推论 1 如果函数()f x 在区间(,)a b 内可导,则()f x 在(,)a b 内恒等于常数的充要条件是()0'≡f x .推论2 如果函数()f x 、()g x 在区间(,)a b 内可导,且对任意的(,)∈x a b 有()()''=f x g x ,则在区间(,)a b 内()f x 与()g x 只差一个常数C ,即()()=+f x g x C例4 试证明恒等式:arctan arctan ()2x x e e x π-+=-∞<<+∞课堂练习1. 利用微分中值定理证明下列不等式: (1)sin sin b a b a -≤-;(2)1(0)x x x e xe x <-<>.2. 证明恒等式: arcsin arccos (11)2x x x π+=-≤≤.3. 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明存在一点(0,1)ξ∈,使 ()()0f f ξξξ'+=.。
中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分.微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述.积分中值定理有积分第一中值定理和积分第二中值定理。
积分第一中值定理为大家熟知,即若)(x f 在[a,b ]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f ba -=⎰ξ。
积分第二中值定理为前者的推广,即若)(),(x g x f 在[a ,b ]上连续,且)(x g 在[a ,b ]上不变号,则在[a ,b]上至少存在一点ξ,使得⎰⎰=ba ba dx x g f dx x g x f )()()()(ξ。
一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。
由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。
这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。
例一.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。
证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a ba +='+')()(ηϕξϕ成立。
证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。
任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。
微分中值定理及其应用我们已经学习了导函数的定义以及一些基本性质,就导数的定义来看,导数是一个新的函数的极限,从而它反映的是函数的局部性质,在这一讲中,我们将学习利用导数来建立一些函数的整体性质。
所用的工具就是所谓的中值定理。
罗尔中值定理定理6.1(罗尔中值定理)设函数在区间上满足:1. 在闭区间上连续;2. 在开区间上可导;3. ,那么,在开区间内必是(至少)存在一点,使罗尔定理的几何意义因为,所以是水平线,用中学学过的推平行线的几何方法,可以直观地看出曲线上至少有一点的切线也应该是平行的。
条件分析定理中的三个条件都很重要,缺少任何一个条件,命题都不能成立。
i) 函数在区间满足条件2和条件3,该函数在上的导数恒为1。
ii)函数满足条件1和条件3,但是条件2却遭到破还(在不可导),结论也不成立。
iii)函数满足条件1和条件2,但条件3不满足,该函数在的的导数恒为1。
vi)函数在闭区间上,三个条件是充分条件,但不是必要条件。
定理的证明因为在上连续,所以由连续函数的最大最小值定理,在上取到最大值和最小值,下面分两种情况讨论:1. ,这就是说恒为常数,此时该函数的导数恒等于零。
可以在上随意取一点,当然有。
2. ,既然最大最小值不等,而两个端点的函数值相等,从而至少有一个最值不在端点取到。
不妨设最大值不在端点取到。
得到:存在,使得。
因为区间内部取到的最值一定是极值,所以由费马定理,。
范例例1:设是一个多项式,且方程没有实零点,则方程至多有一个重数为1的实根。
证:设有两个实根,可以验证:在上满足罗尔定理的条件,从而存在,使得。
这与条件矛盾。
设有一个重根,则。
因为,则,矛盾。
拉格朗日定理及其应用定理6.2 设函数区间上满足:1. 在闭区间上连续;2. 在开区间上可导;那么在开区间内(至少)存在一点,使得拉格朗日定理的几何意义拉格朗日定理是罗尔定理的一个推广,推广所以它们的几何意义几乎是一致的。
(如果)这里,。
高等数学中值定理的题型与解题方法高数中值定理包含:1.罗尔中值定理(rolle); 2.拉格朗日中值定理(lagrange); 3.柯西中值定理(cauchy); 还有经常用到的泰勒展开式(taylor), 其中(,)a b ξ∈,一定是开区间.全国考研的学生都害怕中值定理,看到题目的求解过程看得懂,但是自己不会做,这里往往是在构造函数不会处理,这里给总结一下中值定理所涵盖的题型,保证拿到题目就会做。
题型一:证明:()0nf ξ=基本思路,首先考虑的就是罗尔定理(rolle),还要考虑极值的问题。
例1. ()[,]f x C a b ∈在(,)a b 可导,()()0f a f b >>,()()02a bf a f +<, 证明:存在(,)a b ξ∈,使得'()0f ξ=.分析:由()()0f a f b >>,()()02a bf a f +<,容易想到零点定理。
证明:()()02a b f a f +<,∴存在1(,)2a bx a +∈,使得1()0f x =,又()()0f a f b >>,∴(),()f a f b 同号,∴()()02a bf b f +<,∴存在2(,)2a bx b +∈,使得2()0f x =,∴12()()0f x f x ==,所以根据罗尔中值定理:存在(,)a b ξ∈,使得'()0f ξ=.例2. ()[0,3]f x C ∈在(0,3)内可导,(0)(1)(2)3f f f ++=,(3)1f =, 证明:存在(0,3)ξ∈,使得'()0f ξ= 证明:(1)()[0,3]f x C ∈,∴()f x 在[0,3]使得上有最大值和最小值,M m ,∴根据介值性定理(0)(1)(2)3f f f m M ++≤≤,即1m M ≤≤∴存在[0,3]c ∈,使得()1f c =,(2)()(3)1f c f ==,所以根据罗尔中值定理:存在(,3)(0,3)c ξ∈⊂,使得'()0f ξ=.例3. ()f x 在(0,3)三阶可导,[0,1]x ∈,(1)0f =,3()()F x x f x = 证明:存在(0,1)ξ∈,使得'''()0F ξ= 证明:(1)(0)(1)0F F ==,∴存在1(0,1)ξ∈,使得1'()0F ξ=,(2)23'()3()'()F x x f x x f x =+,所以1'(0)'()0F F ξ==,∴存在21(0,)ξξ∈,使得2''()0F ξ=,(3)223''()6()3'()3'()''()F x xf x x f x x f x x f x =+++,所以2''(0)''()0F F ξ==,∴存在2(0,)(0,1)ξξ∈⊂,使得'''()0F ξ=,例3. ()[0,1]f x C ∈在(0,1)内可导,[0,1]x ∈,(0)1f =,11()22f =,(1)2f = 证明:存在(0,1)ξ∈,使得'()0f ξ= 证明:(0)1f =,11()22f =,(1)2f =∴存在(0,1)ξ∈,使得()f m ξ=,又()f x 在(0,1)内可导,∴存在(0,1)ξ∈,使得'()0f ξ=题型二:证明:含ξ,无其它字母 基本思路,有三种方法: (1)还原法。
中值定理在高等数学解题中的应用中值定理是高等数学中的一种基本概念,它是整个微积分学的核心。
中值定理一般指导函数在某个区间内的平均值与某个点处的函数值具有关系。
在高等数学中,中值定理有着非常广泛的应用,在解题过程中也需要运用中值定理来处理问题,下面我们就来看一下中值定理在高等数学解题中的应用。
1.函数连续性证明在高等数学中,常常需要证明一个函数连续性,中值定理就是证明函数连续性的重要工具之一。
例如,对于一个函数f(x),如果f(x)在某个区间[a,b]上连续,那么根据介值定理,必然存在一个点c∈[a,b],使得f(c)等于f(a)与f(b)的平均值。
因此,只要证明函数在[a,b]上的平均值等于f(c),即可证明函数f(x)在区间[a,b]上连续。
2.求解极值中值定理还可以用来求解函数的极值。
对于函数f(x),如果它在点x=c处取得了极值,那么f'(c)=0. 根据利用拉格朗日中值定理,可以得到:f(x)-f(c)=f'(c)(x-c),其中x∈(c-δ,c+δ)。
因此,当x在(c, c+δ)区间内时,由于f'(c)=0,所以f(x)<f(c)。
同样地,当x在(c-δ,c)区间内时,f(x)>f(c)。
因此我们可以通过中值定理来求解函数的极值点。
3.拐点定位另一种很重要的应用是拐点定位。
对于拐点来说,f''(x)等于零,根据中值定理可以推导出x在拐点的左边和右边呈现不同符号的一阶导数,这就可以用来判断拐点是否存在以及拐点的位置,解决一些重要的问题,比如曲线的切线和凹凸性的分析。
中值定理在高等数学的学习中是一个很重要的概念,它具有非常广泛的应用。
无论是在证明函数连续性、求解函数极值、还是拐点定位中,中值定理都能够给我们提供非常有效的解题思路和方法。
因此,在学习高等数学过程中,我们需要深入掌握中值定理这个概念,并且灵活应用它来解决实际问题,提高自己的数学水平。
中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。
介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。
(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。
此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。
2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。
6、 积分中值定理:若函数f(x)在[a,b]上连续,则至少存在一点],[b a ∈ξ使得)()()(a b f dx x f ba-=⎰ξPs :该定理课本中给的结论是在闭区间上成立。
但是在开区间上也是满足的,下面我们来证明下其在开区间内也成立,即定理变为:若函数f(x)在[a,b]上连续,则至少存在一点),(b a ∈ξ使得)()()(a b f dx x f ba-=⎰ξ证明:设⎰=xadx x f x F )()(,],[b a x ∈因为)(x f 在闭区间上连续,则)(x F 在闭区间上连续且在开区间上可导(导函数即为)(x f )。
则对)(x F 由拉格朗日中值定理有:),(b a ∈∃ξ使得ab dx x f ab a F b F F ba-=--=⎰)()()()`(ξ而)()`(ξξf F = 所以),(b a ∈∃ξ使得)()()(a b f dx x f ba-=⎰ξ。
在每次使用积分中值定理的时候,如果想在开区间内使用,我们便构造该函数,运用拉格朗日中值定理来证明下使其在开区间内成立即可。
千万不可直接运用,因为课本给的定理是闭区间。
定理运用:1、设)(x f 在[0,3]上连续,在(0,3)内存在二阶导函数,且⎰+==2)3()2()()0(2f f dx x f f .证明:(1))2,0(∈∃η使)0()(f f =η(2))3,0(∈∃ξ使0)``(=ξf证明:先看第一小问题:如果用积分中指定理似乎一下子就出来了,但有个问题就是积分中值定理是针对闭区间的。
有的人明知这样还硬是这样做,最后只能是0分。
具体证明方法在上面已经说到,如果要在开区间内用积分中指定理,必须来构造函数用拉格朗日中值定理证明其在开区间内符合。
(1)、令]2,0[),()(0∈=⎰x x F dt t f x则由题意可知)2,0(]2,0[)(上连续,在x F 内可导.则对)(x F 由拉格朗日中值定理有:2)0()2()`()2,0(F F F -=∈∃ηη使)2,0(),0(2)()(2∈==∴⎰ηηf dt t f f(2)、对于证明题而言,特别是真题第一问证明出来的结论,往往在第二问中都会有运用,在做第二问的时候我们不要忘记了第一问证明出来的东西,我们要时刻注意下如何将第一问的东西在第二问中进行运用:第二问是要证明存在点使得函数二阶倒数为0,这个很容易想到罗尔定理来证明零点问题,如果有三个函数值相等,运用两次罗尔定理那不就解决问题啦,并且第一问证明出来了一个等式,如果有f(a)=f(b)=f(c),那么问题就解决了。
第一问中已经在(0,2)内找到一点,那么能否在(2,3)内也找一点满足结论一的形式呢,有了这样想法,就得往下寻找了,)3()2()0(2f f f +=,看到这个很多人会觉得熟悉的,和介值定理很像,下面就来证明:]3,0[)(在x f 上连续,则在]3,2[上也连续,由闭区间上连续函数必存在最大值和最小值,分别设为M,m;则.)3(,)2(M f m M f m ≤≤≤≤ 从而,M f f m ≤+≤2)3()2(,那么由介值定理就有:)0(2)3()2()(],3,2[f f f c f c =+=∈∃使]3,2[),2,0(),()()0(∈∈==∴c c f f f ηη则有罗尔定理可知:0)`(),,0(11=∈∃ξηξf ,0)`(),,(22=∈∃ξηξf c 0)``(),3,0(),(21=⊆∈∃ξξξξfPs :本题记得好像是数三一道真题,考察的知识点蛮多,涉及到积分中值定理,介值定理,最值定理,罗而定理,思路清楚就会很容易做出来。
2、设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:ξξξ-=∈∃1)()1,0()1(f 使得、1)`()`(),1,0()2(=⋅∈∃ηξξηf f 使得、两个不同点、 本题第一问较简单,用零点定理证明即可。
(1)、首先构造函数:]1,0[,1)()(∈-+=x x x f x F1)1()1(11)0()0(==-=-=f F f F01)1()0(<-=⋅F F由零点定理知:ξξξξ-==∈∃1)(,0)()1,0(f F 即使得(2)、初看本问貌似无从下手,但是我们始终要注意,对于真题这么严谨的题目,他的设问是一问紧接一问,第一问中的结论或多或少总会在第二问中起到作用。
在想想高数定理中的就这么些定理,第一问用到的零点定理,从第二问的结论来看,也更本不涉及什么积分问题,证明此问题也只可能从三大中值定理出发,具体是哪个定理,得看自己的情况,做题有时候就是慢慢试,一种方法行不通,就换令一种方法,有想法才是最重要的,对于一道题,你没想法,便无从下手。
另外在说一点,在历年证明题中,柯西中值定理考的最少。
本题结论都涉及一阶倒数,乘积之后为常数,很可能是消去了变为1(你题目做多了,肯定就知道事实就是这样).并且第一问中0与1之间夹了个ξ,如果我们在0与ξ,ξ与1上对)(x f 运用拉格朗日中值定理似乎有些线索。
写一些简单步骤,具体详细步骤就不多写了:将第一问中)(ξf 代入即可。
)1,(,11)()1()`(),0(,1)0()()`(ξζξξξξζξηξξξξη∈-=--=∈-=-=f f f f f f)1,0()1,(),1,0(),0(,1)`()`(⊆∈⊆∈=⋅∴ξζξηηξf fPs :本题是05年数一的一道真题,第一问是基本问题,送分的,第二问有一定区分度,对定理熟练的会容易想到拉格朗日定理,不熟练的可能难以想到方法。
做任何题,最重要的不是你一下子就能把题目搞出来,而是你得有想法,有想法才是最重要的,有了想法你才能一步步的去做,如果行不通了,在改变思路,寻求新的解法,如果你没想法,你就根本无从下手。
对于这道题的结论比较有意思,比较对称,另外一个就是结论的条件,为何要把ηξ、放在两个范围内,不像上一题中直接来个)1,0(∈ξη、,这个分界点1/2 的作用是干吗的。
很可能也是把1 /2当做某一个点就像上一题中的ξ,是否要用到拉格朗日中值定理呢,这是我们的一个想法。
那具体的函数如何来构造呢,这个得从结论出发,22)`()`(ηξηξ+=+f f我们把等式变一下:0)`()`(22=-+-ηηξξf f ,2)`(ξξ-f 这个不就是331)(ξξ-f 关于ξ的导数(而且题目中f(1)=1/3,貌似这样有点想法了),本题会不会也像上一题那样,运用拉格朗日中值定理后相互消掉变为0呢,有了这些 想法我们就要开始往下走了: 先来构造一个函数:)21(2211)21()1()`()21(221)0()21()`(,0)1(,0)0(,31)()(3F F F F F F F F F F x x f x F -=--==-===-=ηξ0)`()`(=+ξηF F 刚好证明出来。
Ps :本题是近几年数二的一道真题,只有一问,有比较大区分度的,得从条件结论互相出发,如何构造出函数是关键。
做出来之后我们反过来看这个1/2的作用就知道了,如果只给)1,0(∈ξη、,那就更难了 得自己找这个点,既然题中给了这个点,并且把两个变量分开在两个区间内,我们就对这两个变量在对应区间用相应定理。
说明真题出的还是很有技巧的。
一般设计难一点的中值定理证明,往往得用拉格朗日定理来证明,两个变量,都涉及到导数问题,这是因为拉格朗日中值定理条件要少些,只需连续,可导即可,不像罗尔定理得有式子相等才可进一步运用。
4.设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0 (1)、写出f(x)的带拉格朗日余项的一阶麦克劳林公式 (2)、证明在[-a,a]上至少存在一点η使得⎰-=aadx x f f a )(3)``(3η第一问课本上记住了写出来就行,考的很基础 (1)、22!2)``()0`(!2)``(!1)0`()0()(x f x f x f x f f x f ξξ+⋅=++= (2)、第二问先将第一问的式子f(x)代入看看有什么结果出来⎰⎰--⋅=aaaadx x f dx x f 22)``()(ξ,)``(ξf 此处不能直接拿到积分号外面,因为他不是与x 无关的数。
做到这儿,我们想办法把他弄到积分号外面似乎就能出来,有了这样想法就得寻求办法。
题目中说道f(x)有二阶连续导数,为何要这样说呢,我们知道连续函数有最大值,最小值,往往会接着和介值定理一起运用。