中值定理 习题
- 格式:ppt
- 大小:441.50 KB
- 文档页数:32
中值定理练习题中值定理是微积分中的一个重要定理,它是由法国数学家Cauchy在19世纪初提出的。
中值定理可以帮助我们理解函数在某个区间内的平均变化率与瞬时变化率之间的关系。
在实际应用中,中值定理常常用于证明其他定理,或者用于解决一些实际问题。
首先,让我们回顾一下中值定理的表述。
中值定理有三种形式:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
这三种形式都是基于相同的思想,即在一个区间内,如果函数连续且可导,那么一定存在一个点,使得函数在该点的瞬时变化率等于函数在整个区间内的平均变化率。
以拉格朗日中值定理为例,假设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导。
那么存在一个点c∈(a, b),使得f'(c)等于函数在区间[a, b]上的平均变化率,即f'(c)=(f(b)-f(a))/(b-a)。
接下来,我们来看几个关于中值定理的练习题。
练习题一:证明函数f(x)=x^3在区间[-1, 1]上满足中值定理的条件,并找出满足中值定理的点。
解答:首先,我们可以验证函数f(x)=x^3在闭区间[-1, 1]上是连续的。
因为多项式函数在整个实数域上都是连续的,所以f(x)=x^3在[-1, 1]上也是连续的。
其次,我们需要证明函数f(x)=x^3在开区间(-1, 1)上是可导的。
对于f(x)=x^3,我们可以直接求导得到f'(x)=3x^2。
因为3x^2在整个实数域上都是连续的,所以f'(x)=3x^2在(-1, 1)上也是连续的。
由于函数f(x)=x^3满足中值定理的条件,根据中值定理,存在一个点c∈(-1, 1),使得f'(c)=(f(1)-f(-1))/(1-(-1))。
将函数f(x)=x^3代入上式,得到3c^2=(1^3-(-1)^3)/(1-(-1))=1。
解方程3c^2=1,我们可以得到c=±1/√3。
因此,满足中值定理的点c分别为c=1/√3和c=-1/√3。
第三章 中值定理与导数的应用(A)1.在下列四个函数中,在[]1,1-上满足罗尔定理条件的函数是( ) A .18+=x y B .142+=x y C .21xy = D .x y sin = 2.函数()xx f 1=满足拉格朗日中值定理条件的区间是 ( ) A .[]2,2- B . []0,2- C .[]2,1 D .[]1,0 3.方程0155=+-x x 在()1,1-内根的个数是 ( ) A .没有实根 B .有且仅有一个实根 C .有两个相异的实根 D .有五个实根 4.若对任意()b a x ,∈,有()()x g x f '=',则 ( ) A .对任意()b a x ,∈,有()()x g x f = B .存在()b a x ,0∈,使()()00x g x f =C .对任意()b a x ,∈,有()()0C x g x f +=(0C 是某个常数)D .对任意()b a x ,∈,有()()C x g x f +=(C 是任意常数) 5.函数()3553x x x f -=在R 上有 ( )A .四个极值点;B .三个极值点C .二个极值点D . 一个极值点 6.函数()7186223+--=x x x x f 的极大值是 ( ) A .17 B .11 C .10 D .97.设()x f 在闭区间[]1,1-上连续,在开区间()1,1-上可导,且()M x f ≤',()00=f ,则必有 ( )A .()M x f ≥B .()M x f >C .()M x f ≤D .()M x f < 8.若函数()x f 在[]b a ,上连续,在()b a ,可导,则 ( ) A .存在()1,0∈θ,有()()()()()a b a b f a f b f --'=-θ B .存在()1,0∈θ,有()()()()()a b a b a f b f a f --+'=-θC .存在()b a ,∈θ,有()()()()b a f b f a f -'=-θD .存在()b a ,∈θ,有()()()()b a f a f b f -'=-θ9.若032<-b a ,则方程()023=+++=c bx ax x x f ( )A .无实根B .有唯一的实根C .有三个实根D .有重实根10.求极限xx x x sin 1sinlim20→时,下列各种解法正确的是 ( )A .用洛必塔法则后,求得极限为0B .因为xx 1lim0→不存在,所以上述极限不存在 C .原式01sin sin lim 0=⋅=→x x x x xD .因为不能用洛必塔法则,故极限不存在 11.设函数212x xy +=,在 ( ) A .()+∞∞-,单调增加 B .()+∞∞-,单调减少 C .()1,1-单调增加,其余区间单调减少 D .()1,1-单调减少,其余区间单调增加12.曲线xe y x+=1 ( )A .有一个拐点B .有二个拐点C .有三个拐点D . 无拐点 13.指出曲线23x xy -=的渐近线 ( ) A .没有水平渐近线,也没有斜渐近线 B .3=x 为其垂直渐近线,但无水平渐近线 C .即有垂直渐近线,又有水平渐近线 D . 只有水平渐近线14.函数()()312321--=x x x f 在区间()2,0上最小值为 ( )A .4729B .0C .1D .无最小值 15.求()201ln lim x x x x +-→16.求()⎪⎪⎭⎫⎝⎛-+→x x x 11ln 1lim 0 17.求x xx 3cos sin 21lim6-→π18.求()xx x1201lim +→19.求xx arctgx ln 12lim ⎪⎭⎫⎝⎛-+∞→π20.求函数149323+--=x x x y 的单调区间。
题目1证明题 一般。
使,内至少存在一点上正值,连续,则在在设⎰⎰⎰==bbdx x f dx x f dx x f b a b a x f aa)(21)()( ),( ],[ )(ξξξ解答_从而原式成立。
又即使在一点由根的存在性定理,存时,由于证:令⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=+=+===∈>=<-=∴>∈-=ξξξξξξξξξ aaaaaaa xa)(2)()()()()()()(0) F(b)(a, 0)()(0)()(0)( ],[)()()(dxx f dxx f dx x f dxx f dx x f dt t f dtt f dt t f dt t f b F dt t f a F x f b a x dtt f dt t f x F bbb bbbbxQ题目2证明题 一般。
证明且上可导在设2)(2)(:,0)(,)(,],[)(a b Mdx x f a f M x f b a x f b a -≤=≤'⎰解答_。
有由定积分的比较定理又则微分中值定理上满足在由假设可知证明2)(2)()( , )()( ),( M ,(x)f x)(a, ))(( )()()( , ],[)(),(,:a b Mdx a x M dx x f a x M x f b a x a x f a f x f x f x a x f b a x b a b a -=-≤-≤∴∈∀≤'∈-'=-=∈∀⎰⎰ ξξ题目16证明题。
证明:上连续,,在设⎰⎰-+=>aadx x a f x f dx x f a a x f 02 0)]2()([)( )0( ]2,0[ )(解答_。
,则令由于⎰⎰⎰⎰⎰⎰⎰-+=-+=-=-=+=a aaaaaaadx x a f x f dtt a f dx x f dx x f dtdx t a x dxx f dx x f dx x f 02 02 02 0)]2()([ )2( )( )(2)()()(题目5证明题。
第六章 中值定理与泰勒公式1. 证明: 10x x ++=3只有一个实根且在(1,0)-中.2.证明:若函数f 在区间I 上可导,且()0f x '≡,x I ∈, 则f 在I 上恒为常数.3. 求分段函数()f x 的导数. [说明定理的作用]sin ,()ln(1),x x x f x x x ≤⎧+=⎨>+⎩20,0,4. 设sin , () 0,x x f x xx ⎧≠⎪=⎨⎪=⎩210,0,求(00)f '+,(0)f '.5. 考察2()f x x =,3()g x x =,[1,1]x ∈-相应的中值形式.6. 1) 设f 在闭区间[,]a b (0)a >上连续,(,)a b 内可导, 则存在(,)a b ξ∈, 使得()()ln()()bf b f a f aξξ'-=⋅⋅.2) 对函数()f x x =2确定()()()f x h f x h f x h θ'+-=⋅+中的θ, 1()2θ=.7. 证明: 对任何x R ∈,arctan arccot x x π+=2.8. 设函数f 对任何,x h R ∈,2()()f x h f x Mh +-≤,0M >为常数,则f 为常值函数.9. 证明0h >时,2arctan 1hh h h <<+10. 1)证明: 方程sin cos 0x x x +⋅=在(0,)π内有实根.2)证明: 方程32432+ax bx cx a b c ++=+在(0,1)内有实根.11.证明: 1) 1x x >+e ,()0x ≠;2) ()()22ln 1221x x x x x x -<+<-+. 0x >.12. 证明: 0x >时,sin x x x >-33!.13. 1) x >12时,2ln(1)arctan 1x x +>-.2) tan (0)sin 2x x x x x π<<<.14. 用中值定理证明:sin sin x y x y -≤-,,x y R ∀∈.15. 证明: 若函数g f ,在区间],[b a 上可导,且)()(),()(a g a f x g x f ='>', 则在],(b a 内有)()(x g x f >.16. 设f 在[,]a b 上二阶可导,且()()0f a f b ==,且存在点(,)c a b ∈使得()0f c >,证明: 至少存在一点(,)a b ξ∈使得"()0f ξ<.17. 试问函数32)(,)(x x g x x f ==在区间]1,1[-上能否应用Cauchy 中值定理得到相应的结论, 为什么?18. 设函数f 在点a 的某个领域具有二阶导数, 证明: 对充分小的h ,存在θ,10<<θ,使得2)()()(2)()(2h a f h a f ha f h a f h a f θθ-''++''=--++.19. 若f 在[,]a b 上可微,则存在(,)a b ξ∈, 使得22'2[()()]()()f b f a b a f ξξ-=-.20. 设f 在[,]a b 上连续, (,)a b 上可导,且()()0f a f b ==,证明:对任何R λ∈,存在c R ∈,使得 '()()f c f c λ=.21. 设0,>b a .证明方程b ax x ++3=0不存在正根.22. 1) 0sin lim x xx→ 2) 132lim 1x x x x x x →-+--+3323) lim (arctan )x x x π→+∞-2 4) 21cos lim cos tan x xx x π→++5) 0lim x +→ 6) 012limln(1)xx e x x →-++122()7) 20ln(1sin 4)lim arcsin x x x x →++() 8) 02lim sin x x x e e xx x -→---(过程不要,直接写答案)23. 1) cos lim x x x x →∞+ 2) 0sinlim sin x x x x →⋅21 3) 0ln(sin )limln(sin )x ax bx → 4) 2tan lim tan 3x xx π→24. 1) 011lim()sin x x x →- 2) 11lim()-1ln x x x x→-.25. 1) 111lim xx x-→ 2) ()21lim cos x x x →.26. 1) ln lim ()xx x →+∞+1 2) ln 0lim(cot )xx x +→1.27. 证明2()x f x x e -=3为R 上的有界函数.28 1) 011lim()1x x x e →-- 2) 111lim x x x -→3) sin 0lim(tan )x x x → 4) 22011lim()sin x x x→- 29.3) 30tan sin limx x x x →- 4) 201cot lim x x x x →⎛⎫- ⎪⎝⎭5) ln lim(ln )xx x x x →+∞ 6) 10(1)lim xx x e x→+-7) 20()lim x x x a x a x→+- 8) 10lim()x xx x e →+必须记住的泰勒公式(peano 型)1) 1!nxn x x e x o x n =+++++2...()2!2) ()11sin 1 (1)(1)!m m m x x x x o x m --=-+++-+-35223!5!2 3) 1cos 1...(1)(2)!m m m x x x x o x m +=-+++-+2422()2!4! 4) 1ln(1)1...(1)nn n x x x x o x n-+=-+++-+23()23 5)11n n x x x o x x=+++++-21...() 6) (1)(1)1(1)1!n n n x x x x o x n ααααααα--⋅⋅⋅-++=+++++2()...()2!1(1)(23)!!1(2)!!n nn n x x x o x n ---=+++++211!!...()24!! 习题:1.求2cos x 的具Peano 余项的Maclaurin 展式;2.当[0,2]x ∈时,() ()f x f x ''≤≤1,1, 证明: |'()| 2.f x ≤3. 证明:若函数f 在点a 处二阶可导,且()f a ''≠0,则对Lagrange 公式()()()f a h f a f a h h θ'+-=+⋅ 01θ<<中的θ,有0lim h θ→=12.4. 、设函数f 在[0,]a 上具有二阶导数,且"()f x M ≤,f 在(0,)a 内取最大值,求证''(0)()f f a Ma +≤.5. .有一个无盖的圆柱形容器,当给定体积为V 时,要使容器的表面积为最小, 问底的半径与容器高的比例应该怎样?6. 讨论函数()f x =()arctan g x x =的凸凹性。
第十五讲 中值定理习题一、 选择题1. 1. 设函数()sin f x x =在[0,]π上满足罗尔中值定理的条件,则罗尔中值定理的结论中的=ξ【 】A. πB. 2πC. 3πD. 4π 2. 下列函数中在闭区间],1[e 上满足拉格朗日中值定理条件的是【 】A. x lnB. x ln lnC. xln 1 D. )2ln(x - 3. 设函数)3)(2)(1()(---=x x x x f ,则方程0)('=x f 有【 】A. 一个实根B. 二个实根C. 三个实根D. 无实根4. 下列命题正确的是【 】 A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点5. 函数256, y x x =-+在闭区间 [2,3]上满足罗尔定理,则ξ=【 】 A. 0 B.12 C. 52 D. 2 6. 函数22y x x =--在闭区间[1,2]-上满足罗尔定理,则ξ=【 】A. 0B.12 C. 1 D. 27. 函数y =在闭区间[2,2]-上满足罗尔定理,则ξ=【 】A. 0B.12 C. 1 D. 2 13. 方程410x x --=至少有一个根的区间是【 】A.(0,1/2)B.(1/2,1)C. (2,3)D.(1,2)14. 函数(1)y x x =+.在闭区间[]1,0-上满足罗尔定理的条件,由罗尔定理确定的=ξ 【 】A. 0B. 12-C. 1D. 12 15. 已知函数()32=+f x x x 在闭区间[0,1]上连续,在开区间(0,1)内可导,则拉格朗日定理成立的ξ是【 】 A.B. C. - D. 13± 二、证明题1. 证明:当+∞<≤x 0时,x x ≤arctan 。
第三章 中值定理与导数应用§1 中值定理一、是非判定题一、假设0)('),,(,),(,],[)(=∈ξξf b a b a b a x f 使且必存在可导在有定义在 (×)二、假设0)('),,(),()(,],[)(=∈=ξξf b a b f a f b a x f 使则必存在在连续在 (×)3、假设0)('),,(),(lim )(lim ,],[)(00=∈=-→+→ξξf b a x f x f b a x f b x a x 使则存在且内可导在 (√)4、假设))((')()(),,(,],[)(a b f a f b f b a b a x f -=-∈ξξ使则必存在内可导在 (√)五、假设使内至少存在一点则在可导在上连续在与,),(,),(,],[)()(ξb a b a b a x g x f )(')(')()()()(ξξg f a g b g a f b f =-- (×)(提示:柯西中值定理,少条件0)('≠ξg )六、假设对任意,0)('),,(=∈x f b a x 都有那么在(a,b)内f(x)恒为常数 (√)二.单项选择题 一、设1.0,(),()()'()()ab f x a x b f b f a f b a xξξ<=<<-=-则在内,使成立的有 C 。
(A )只有一点(B )有两个点(C )不存在(D )是不是存在与a,b 取值有关二、设],[)(b a x f 在上持续,(,),()(()()a b I f a f b =内可导则与 Ⅱ)0)(',),((≡x f b a 内在之间关系是 B 。
(A) (I)是(Ⅱ)的充分但非必要条件; (B )(I )是(Ⅱ)的必要但非充分条件;(C )(I )是(Ⅱ)的充分必要条件; (D )(I )不是(Ⅱ)的充分条件,也不是必要条件。
中值定理练习题一、基本概念题1. 判断下列命题是否正确,并说明理由:若函数f(x)在[a, b]上连续,则在(a, b)内至少存在一点ξ,使得f(ξ) = (f(b) f(a))/(b a)。
若函数f(x)在[a, b]上可导,且f'(x) = 0,则f(x)在[a, b]上恒为常数。
2. 设函数f(x)在[a, b]上连续,在(a, b)内可导,证明至少存在一点ξ∈(a, b),使得f'(ξ) = (f(b) f(a))/(b a)。
3. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f(a) =f(b),证明至少存在一点ξ∈(a, b),使得f'(ξ) = 0。
二、应用题1. 利用罗尔定理证明下列等式:sinπ = sin2πe^a = e^b,其中a = b2. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f(a) = 0,f(b) = 1。
证明至少存在一点ξ∈(a, b),使得f'(ξ) = 1/(b a)。
3. 设函数f(x)在[0, 1]上连续,在(0, 1)内可导,且f(0) = 0,f(1) = 1。
证明至少存在一点ξ∈(0, 1),使得f'(ξ) = 1。
三、综合题1. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f(a) =f(b)。
证明至少存在一点ξ∈(a, b),使得f'(ξ) = f'(η),其中η∈(a, b)。
证明至少存在一点ξ∈(a, b),使得f(ξ) = (f(b) f(a))/(b a)。
3. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x) ≤ 0。
证明至少存在一点ξ∈[a, b],使得f(ξ) = (f(b) f(a))/(ba)。
四、拓展题1. 设函数f(x)在[a, b]上连续,在(a, b)内可导,且f'(x) ≠ 0。
第四章 中值定理与导数的应用一、填空题1、函数4)(x x f =在区间[1,2]上满足拉格朗日中值定理,则ξ=_______.2、设)4)(3)(2)(1()(----=x x x x x f ,方程0)(='x f 有____个根,它们分别在区间_________上3.如果函数)(x f 在区间I 上的导数__________,那么)(x f 在区间I 上是一个常数.4、xx y 82+=(0>x )在区间_____单调减少,在区间_____单调增加. 5、.曲线)1ln(2x y +=在区间_____上是凸的,在区间_____上是凹的,拐点为_____6、若)(x f 在[a,b]上连续、在(a,b)内二阶可导且 _____ ,则)(x f 在[a,b]上的曲线是凹的.7、若()bx ax x x f ++=35在x = 1时有极值56,则a = ,b = . 8、()x f 二阶可导,()0x f '' = 0是曲线()x f y =上点_____为拐点的 条件.9、函数y=sinx-cosx 在区间(0,2π)内的极大值点是_____,极小值点是_____.10、函数2x y e -=的单调递增区间为_____,最大值为11、设函数()x f 在点0x 处具有导数,且在0x 处取得极值,则该函数在0x 处的导数()='0x f 。
12、()x x f ln =在[1,e ]上满足拉格朗日定理条件,则在(1,e )内存在一点=ξ ,使()()11=-⋅'e f ξ13、若()x f 在[0,1]上连续,在(0,1)内可导,且()00=f ,()11=f ,由拉格朗日定理,必存在点∈ξ(0,1),使()()='⋅ξξf e f .14、()()()()321---=x x x x x f ,则方程()0='x f ,有 个实根。
1第三章 中值定理与导数的应用§1 中值定理一、 证明:当1>x 时,x e e x ⋅>。
二、证明方程015=-+x x 只有一个正根。
三、设)()(x g x f 、在],[b a 上连续,在),(b a 内可导,证明在),(b a 内有一点ξ,使得 )()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-= 四、证明:若函数)(x f 在),(+∞-∞内满足关系式)()(x f x f =',且1)0(=f ,则x e x f =)(。
五、设函数)(x f y =在0=x 的某邻域内具有n 阶导数,且 )0()0()0()1(-=='=n f f f , 试用柯西中值定理证明:10 !)()()(<<=θθ,n x f xx f n n §2 洛必达法则一、 求下列极限(1)2031)cos(sinlim xx x -→= (2)xx x x 30sin arcsin lim -→= (3)x x x 21sin 1)1cos(ln lim π--→= (4)x x x x 21cot ])1[ln( lim π--+→= (5)21)arcsin ( lim 0x xx x →= (6)x cb ac b a x x x x 1)( lim 1110+++++++→,其中0≠++c b a 。
§3 泰勒公式一、 求函数x x f tan )(=的二阶麦克劳林公式。
二、 求函数x xe x f =)(的n 阶麦克劳林公式。
、当40=x 时,求函数x y =的三阶泰勒公式。
三、 当10=x 时,求函数x x x f ln )(2=的n 阶泰勒公式。
2§4 函数单调性的判定法一、 确定下列函数的单调区间:(1)x x y ln 22-=;(2))0())(2(32>--=a x a a x y ,二、证明:当0>x 时,221)1ln(1x x x x +>+++;三、设在],[b a 上0)(>''x f ,证明函数a x a f x f x --=)()()(ϕ在],(b a 上是单调增加的。
微分中值定理与T a y l o r公式-CAL-FENGHAI.-(YICAI)-Company One1中值定理与Taylor 公式练习题中值定理练习题1.设函数)(x f 在),(+∞a 内有二阶导数且0)1(=+a f ,0)(lim =+→x f ax ,0)(lim =+∞→x f x ,证明至少存在一点ξ使.0)(=''ξf2.设f 是一定义于长度不小于2的闭区间I 上的实函数满足.1|)(|,1|)(|≤''≤x f x f 对于I x ∈,证明:2|)(|≤'x f . 对于I x ∈,且有函数使得等式成立.3.(1)设函数)(x f 在区间]1,0[上可导,且,1)1(,0)0(==f f 证明在区间]1,0[上存在21,x x 使12112()()f x f x +=''. (2)若函数)(x f 在区间]1,0[上连续,在(0,1)内可导,且,1)1(,0)0(==f f 证明:对任意给定的正数,a b ,在(0,1)内存在不同的点ξ和η,使得()()a ba b f f ξη+=+''. 变式:若函数)(x f 在区间]1,0[上单调连续,在(0,1)内可导,且,1)1(,0)0(==f f 证明:对任何正整数n ,在(0,1)内存在n 个不同的点1ξ,2ξ,…,n ξ,使11()ni i n f ξ=='∑. 4.设函数)(x f 在实数R 上可微,且满足)(||)(|,0)0(x f p x f f ≤'=, 其中10<<p . 证明.,0)(R x x f ∈≡.5.已知函数],[)(b a C x g ∈, 且函数)(x f 在区间],[b a 上满足0=-'+''f f g f , 又0)()(==b f a f , 证明)(x f 在区间],[b a 上恒为一常数.6.设)(x f 在闭区间],[b a 上连续,开区间),(b a 内可导20π≤<≤b a , 证明在区间),(b a 内至少存在两点21,ξξ使1212cos sin )(2tan)(ξξξξf ba f '=+'7.设)(x f 在包含原点的某区间),(b a 内有二阶导数,且)(,0)(,1)(lim 0b x a x f xx f x <<>''=→.证明x x f ≥)(.8.设n n x a x a a x f +++= 10)(是实系数多项式,2≥n , 且某个)11(0-≤≤=n k a k 及当k i ≠时,0≠i a .证明:若)(x f 有n 个相异的实根,则011<+-k k a a .9.设)(x f 在]1,0[上二阶可导,且0)1()0()1()0(='='==f f f f .证明:存在)1,0(∈ξ使得)()(ξξf f =''.10.设)(x f 在闭区间],0[a 上具有二阶导数,且在开区间),0(a 内达到最小值, 又],0[|)(|a x M x f ∈≤'', 证明Ma a f f ≤'+'|)(|)0(|.11.设)(x f 在闭区间],[b a 上连续,开区间),(b a 内可导,0>a 且0)(=a f , 证明:)()(),(ξξξξf ab f b a '-=∈∃使. 12.设)(x f 在区间],[b a 上具有二阶导数,且0)()(='='b f a f , 证明至少存在一点),(b a ∈ξ使2)(|)()(|4|)(|a b a f b f f --≥''ξ.13.设n a a a <<< 21为n 个不同的实数,函数在],[1n a a 上有n 阶导数, 并满足0)()()(21====n a f a f a f ,则对每个∈c ],[1n a a 都相应地存在∈ξ),(1n a a 满足等式)(!)())(()()(21ξn n f n a c a c a c c f ---=14.设函数)(x f 在),0[+∞上可导,且21)(0x xx f +≤≤.证明:),0(+∞∈∃ξ,使222)1(1)(ξξξ+-='f . 15.设函数)(x f 在]2,2[-上二阶可导, 且1|)(|≤x f , 又4)0()0(22='+f f , 证明:至少存在一点)2,2(-∈ξ使得0)()(=''+ξξf f16.设)(x f 在),0[+∞上连续, 可导且)0()(lim f x f x =+∞→. 证明:),0(+∞∈∃c 使得0)(='c f .17.设)(x f 在区间]1,1[-上三次可微, 证明)1,1(-∈∃ξ使得)0(2)1()1(6)(f f f f '---='''ξ. 18.设函数)(x f 在整个数轴上二次可微且有界, 证明存在一点0x 使得0)(0=''x f . 19.设函数)(),(x g x f 在],[b a 上二阶可导,且0)(≠''x g ,0)()()()(====b g a g b f a f ,证明:1)在开区间),(b a 内0)(≠x g . 2)至少存在一点),(b a ∈ξ, 使)()()()(ξξξξg f g f ''''=. 20.设函数)(x f 在区间]1,0[上具有二阶导数,且a x f ≤|)(|, b x f ≤''|)(|,其中b a ,是非负常数,)1,0(∈c .证明:22|)(|b a c f +≤'. 21.设)(),(x g x f 在],[b a 上连续,在),(b a 内具有二阶导数, 且存在相等的最大值,)()(),()(b g b f a g a f ==. 证明:),(b a ∈∃ξ,使得)()(ξξg f ''=''22. 设)(x f 在]1,0[上具有三阶连续导数,且2)1(,1)0(==f f 0)21(='f . 证明:)1,0(∈∃ξ使24)(≥'''ξf .23.设函数g f ,可微, 且对一切x 满足)()()()(x g x f x g x f '≠'. 证明在0)(=x f 的两个根之间存在0)(=x g 的一个根.24.设对一切的R y x ∈,有2)(|)()(|y x y f x f -≤-, 证明f 为常数.Taylor 公式基本练习题.求:xx x x e x x 98!812!210sin 1lim -----→ . .已知()x f 三次可导,且()00=f ()00='f ()20=''f ()30='''f , 求:()320lim x x x f x -→. .()x f 二阶连续可导,且()()000='=f f ()60=''f . 求:()420sin lim x x f x →.. xx xx x x ln )1(ln )1(lim1---→.. 求 ])2[(lim 1x e x xx -+∞→.. 求 xxx e x 110)1(lim ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+→. . 求 xx x x xx ln 1lim 1+--→.. 求:()[]xx x x 121ln lim +-∞→.. 求:xx x x e x x 30sin )1(sin lim +-→. 设x x x f sin )(2=, 求())0(99f .. 设)(x f 在原点的邻域内二阶可导且0))(3sin (lim 230=+→xx f x x x . 求(1) )0(),0(),0(f f f '''. (2) ])(3[lim 220xx f x x +→. . 设)(x f 有二阶连续导数且4)0(,0)(lim0=''=→f xx f x . 求x x x x f 10))(1(lim +→. . 求)1(sin lim20--→x x e x xx .. 设在),1[+∞内)(x f 二阶可导, 且0)(,3)1(,2)1(≤''-='=x f f f . 证明:在),1[+∞内0)(=x f 只有一实根.. 设0→x 时x x b a x u sin )cos (+-=是x 的5阶无穷小量.求b a ,. . 设0→x 时12---=bx ax e u x 是x 的3阶无穷小量.求b a ,及主部. --------------------------------.证明:)1(,212212>=--x x x arctgarctgx π. . 证明:)1(,1222<-=x x xarctgarctgx . . 证:)21(,arcsin 212arcsin 2≤=-x x x x .. 证明: 方程c=2的根不超过3个.+axbxe x+。