滤波器基本原理、分类、应用
- 格式:doc
- 大小:167.50 KB
- 文档页数:12
滤波器在自动化控制系统中的应用自动化控制系统是现代工业生产中不可或缺的组成部分。
为了确保系统的稳定性和可靠性,滤波器成为自动化控制系统中重要的组件之一。
本文将介绍滤波器的基本原理、种类以及在自动化控制系统中的应用。
一、滤波器的基本原理滤波器是一种电子设备,用于改变信号的频率特性。
它通过选择性地传递或阻断不同频率的信号,以达到去除噪声、衰减干扰、提高信号质量的目的。
滤波器的基本原理基于信号的频率和幅度特性,根据不同的滤波特性可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
二、滤波器的种类根据滤波器的工作原理和电路结构,常见的滤波器种类包括:1. RC滤波器:由电阻和电容构成,适用于低频信号的滤波。
2. LC滤波器:由电感和电容构成,适用于高频信号的滤波。
3. 活性滤波器:基于放大器的反馈原理,包括RC活性滤波器和LC 活性滤波器。
4. 数字滤波器:利用数字信号处理技术实现的滤波器,包括有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
5. 其他特殊滤波器:如陷波器、倍频器等。
三、滤波器在自动化控制系统中的应用滤波器在自动化控制系统中起到了重要的作用,其应用包括:1. 信号处理与增强:自动化控制系统中的传感器常常受到来自电源、电机等部件的噪声干扰。
通过添加适当的滤波器,可以有效地去除噪声,提高传感器的测量准确性和信号质量。
2. 控制系统稳定性:在自动化控制系统中,存在着信号干扰和噪声。
这些干扰和噪声会对控制系统的稳定性和精度造成影响。
利用滤波器可以衰减这些干扰信号,提高系统的稳定性和抗干扰能力。
3. 通信与传输:在自动化控制系统中,信号的传输和通信是不可或缺的环节。
而信号传输中会受到多种因素的影响,如衰减、干扰等。
通过使用适当的滤波器,可以提高信号的传输质量,减少干扰对信号的影响,保证通信的稳定性。
4. 电源管理与净化:在自动化控制系统中,电源的稳定性对系统的正常运行至关重要。
滤波器可以对电源信号进行稳压和净化处理,保证系统的供电质量,减少电压波动和纹波。
滤波器的原理和应用滤波器是电子领域中常见的一种电路元件,主要用于滤除信号中的不需要的频率成分,从而得到期望的频率信号。
本文将介绍滤波器的原理、分类和应用。
一、滤波器的原理滤波器的原理是基于信号的频域特性。
信号可以表示为一系列频率不同的正弦波的叠加,而滤波器的任务就是通过选择性地传递或阻断不同频率的成分来实现信号的处理。
滤波器原理的核心是滤波器的频率响应。
滤波器的频率响应描述了在不同频率下信号通过滤波器时的增益或衰减情况。
一般来说,我们将频率响应分为低频通过增益、高频通过衰减或者其他形式。
二、滤波器的分类根据滤波器的特性,我们可以将其分为以下几种主要类型:1. 低通滤波器(Low-pass Filter):该类型滤波器能够通过低于某一截止频率的信号成分,而阻断高于该频率的信号成分。
2. 高通滤波器(High-pass Filter):与低通滤波器相反,高通滤波器会通过高于某一截止频率的信号成分,而阻断低于该频率的信号成分。
3. 带通滤波器(Band-pass Filter):带通滤波器可以通过中心频率区间内的信号成分,而阻断低于和高于该频率区间的信号成分。
4. 带阻滤波器(Band-stop Filter):带阻滤波器能够阻止中心频率区间内的信号成分通过,而通过低于和高于该频率区间的信号成分。
此外,还有一些特殊类型的滤波器,如全通滤波器、陷波滤波器等,根据具体应用需求选择适合的滤波器类型。
三、滤波器的应用滤波器在电子工程中应用广泛,下面将介绍几个常见的应用领域。
1. 语音与音频处理:在语音和音频处理中,滤波器用于去除背景噪声、增加音频的清晰度和质量。
根据所需音频频率的不同成分,可以选择不同类型的滤波器。
2. 无线通信系统:滤波器在无线通信系统中用于信号的调制和解调,以及抑制乱频和干扰信号。
例如,调制解调器中的滤波器可以选择特定频率范围内的信号。
3. 音频设备和音响系统:滤波器在音频设备和音响系统中常用于音频效果处理,如均衡器(Equalizer)和声音效果器(Sound Effects Processor)。
滤波器的原理及其应用什么是滤波器?滤波器是电子领域中常用的一种电路元件,用于选择性地通过或抑制特定频率的信号。
它可以将输入信号中的某些频率成分滤除或衰减,只留下感兴趣的频率范围内的信号。
滤波器的分类滤波器根据其频率响应特性可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
下面分别介绍这四种滤波器。
1. 低通滤波器低通滤波器(Low Pass Filter,简称LPF)是一种允许低于截止频率的信号通过,同时阻隔高于截止频率的信号的滤波器。
它对低频信号有较好的通过特性,而对高频信号进行衰减。
2. 高通滤波器高通滤波器(High Pass Filter,简称HPF)是一种阻止低于截止频率的信号通过,只允许高于截止频率的信号通过的滤波器。
它对高频信号有较好的通过特性,而对低频信号进行衰减。
3. 带通滤波器带通滤波器(Band Pass Filter,简称BPF)是一种允许位于某一频带范围内的信号通过,同时阻隔低于和高于该频带范围的信号的滤波器。
4. 带阻滤波器带阻滤波器(Band Stop Filter,简称BSF)是一种阻止位于某一频带范围内的信号通过,允许低于和高于该频带范围的信号通过的滤波器。
滤波器的工作原理滤波器的工作原理可以通过电路理论来解释。
下面以低通滤波器为例介绍其工作原理。
在低通滤波器中,截止频率以上的信号被衰减,截止频率以下的信号被通过。
这是通过电路中的电容和电感元件来实现的。
具体来说,当输入信号经过滤波器电路时,电阻、电容和电感这些元件的相互作用导致不同频率的信号在电路中有不同的响应。
低频信号相对于高频信号来说具有较长的周期,所以低频信号在电容和电感上的储能和释能过程比较慢,从而通过电阻消耗的电压也较小。
而高频信号的周期较短,电容和电感上的储能和释能过程比较快,从而通过电阻消耗的电压较大。
通过合理选择电容和电感的数值,滤波器可以实现对不同频率信号的滤波效果。
滤波器的应用滤波器在电子器件和通信系统中有广泛的应用。
滤波器在电力电子设备中的电磁兼容随着电力电子设备在各个行业的广泛应用,电磁兼容性问题日益凸显。
而滤波器作为一种重要的电子元件,在电力电子设备中起到了关键的作用。
本文将探讨滤波器在电力电子设备中的电磁兼容性问题,并就其原理、分类和应用进行分析。
一、滤波器的原理滤波器是一种能够选择性地透传或阻断特定频率信号的电子元件。
其基本原理是利用电感、电容和电阻等元件对输入信号进行频率选择,以滤除干扰或噪声,从而保证设备正常工作。
滤波器的主要作用是削弱或消除电力电子设备中产生的高频噪声,降低电磁辐射水平,提高设备的抗干扰能力。
二、滤波器的分类根据滤波器的工作频率范围,可以将其分为低频滤波器、中频滤波器和高频滤波器三种类型。
低频滤波器主要用于消除电源输入端的交流干扰信号;中频滤波器一般应用于直流电机驱动等中频电力电子设备;高频滤波器则用于消除高频电磁干扰信号。
根据滤波器的结构形式,可将其分为被动滤波器和主动滤波器两种类型。
被动滤波器是指由电感和电容等被动元件构成,主要通过阻抗匹配来滤除干扰信号。
而主动滤波器则以放大器为核心,通过反馈电路实现滤波效果。
三、滤波器的应用滤波器在电力电子设备中有着广泛的应用。
首先,滤波器常用于直流电源和交流电源输入端,以消除输入端的干扰信号,保证设备的正常工作。
其次,滤波器可以用于驱动直流电机的PWM(脉宽调制)变换器中,以消除开关频率产生的高次谐波,降低电机的噪声和振动。
此外,滤波器还可以用于直流电压变换器、逆变器、稳压器等电力电子设备中,以提高系统的电磁兼容性。
滤波器的选择与设计是保证电力电子设备电磁兼容性的重要环节。
在实际应用中,应根据设备工作频率、线路阻抗、降低电磁辐射水平等需求来选择合适的滤波器。
常见的滤波器设计方法包括LC滤波器、Pi型滤波器、LCL滤波器等。
设计滤波器时,还需综合考虑元件损耗、尺寸、成本等因素。
总之,滤波器作为电力电子设备中的重要组成部分,对于保障设备的电磁兼容性起着至关重要的作用。
滤波器的基本原理和应用滤波器是电子领域中常用的一个设备,它具有将特定频率范围的信号通过,而阻塞其他频率范围的信号的功能。
滤波器在通信系统、音频处理、图像处理等领域都有着广泛的应用。
本文将介绍滤波器的基本原理和应用,以帮助读者更好地理解和使用滤波器。
一、滤波器的基本原理滤波器的基本原理是基于信号的频域特性进行筛选和处理。
它通过在不同频率上具有不同的传递特性,来选择性地通过或阻塞信号的特定部分。
滤波器可以根据其频率响应分为低通、高通、带通和带阻四种类型。
1. 低通滤波器(Low-pass Filter)低通滤波器的作用是通过低于截止频率的信号,并阻塞高于截止频率的信号。
它常被用于音频系统和图像处理中,去除高频噪声和细节,保留低频信号和平滑部分。
2. 高通滤波器(High-pass Filter)高通滤波器的作用是通过高于截止频率的信号,并阻塞低于截止频率的信号。
它常用于音频系统和图像处理中,去除低频噪声和背景,保留高频信号和细节。
3. 带通滤波器(Band-pass Filter)带通滤波器的作用是通过特定的频率范围内的信号,并同时阻塞低于和高于该频率范围的信号。
它常被用于通信系统中的频率选择性传输和音频系统中的音乐分析。
4. 带阻滤波器(Band-stop Filter)带阻滤波器的作用是阻塞特定的频率范围内的信号,并同时通过低于和高于该频率范围的信号。
它常被用于滤除特定频率的干扰信号,如电源噪声和通信干扰。
二、滤波器的应用滤波器在电子领域中有着广泛的应用,下面将介绍一些常见的应用场景。
1. 通信系统中的滤波器在通信系统中,滤波器起到了筛选信号和抑制噪声的作用。
接收端常使用低通滤波器,以去除接收到的信号中的高频噪声和干扰。
而发送端常使用高通滤波器,以去除发送信号中的低频噪声和背景。
带通滤波器和带阻滤波器则常用于频率选择性传输,如调频广播、调频电视等。
2. 音频系统中的滤波器在音频系统中,滤波器用于音频信号的处理和音乐分析。
滤波的工作原理及应用1. 滤波概述滤波是信号处理中一种常用的技术,通过去除或改变信号中的某些频率分量,使得滤波后的信号满足特定的要求。
滤波的工作原理基于信号的频域特性,通过选择合适的滤波器类型和设计参数,可以实现对信号的滤波操作。
2. 滤波器类型滤波器根据其频率响应的特点可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等几种类型。
下面分别介绍这些滤波器的工作原理及应用:2.1 低通滤波器低通滤波器允许低于某个截止频率的信号通过,并削弱高于截止频率的信号。
它在音频处理、图像处理等领域有广泛的应用。
常见的低通滤波器有RC低通滤波器、巴特沃斯低通滤波器和Butterworth低通滤波器等。
2.2 高通滤波器高通滤波器允许高于某个截止频率的信号通过,并削弱低于截止频率的信号。
它在通信系统中常用来去除直流分量和低频噪声,以及在音乐产生过程中削弱或去除低频信号。
常见的高通滤波器有RC高通滤波器、巴特沃斯高通滤波器和Butterworth高通滤波器等。
2.3 带通滤波器带通滤波器允许某个频率范围内的信号通过,并削弱其他频率范围内的信号。
它在音频处理、无线通信和图像处理等领域有广泛的应用。
常见的带通滤波器有二阶滤波器、巴特沃斯带通滤波器和Butterworth带通滤波器等。
2.4 带阻滤波器带阻滤波器允许某个频率范围外的信号通过,并削弱该范围内的信号。
它在通信系统中常用来去除特定频率的干扰信号。
常见的带阻滤波器有二阶滤波器、巴特沃斯带阻滤波器和Butterworth带阻滤波器等。
3. 滤波器的设计方法滤波器的设计方法主要包括模拟滤波器设计和数字滤波器设计。
3.1 模拟滤波器设计模拟滤波器设计是指基于模拟电路的滤波器设计方法。
其中,RC滤波器和RL 滤波器是最简单的模拟滤波器。
此外,还有巴特沃斯滤波器、切比雪夫滤波器和Elliptic滤波器等。
3.2 数字滤波器设计数字滤波器设计是指基于数字信号处理的滤波器设计方法。
了解滤波器的种类和工作原理滤波器是一种用于信号处理和电子通信中的重要设备。
它能够通过不同的工作原理对信号进行筛选和调整,以满足特定的需求。
本文将介绍滤波器的种类和工作原理。
一、低通滤波器低通滤波器是一种常见的滤波器类型,其主要作用是通过允许低频信号通过,而阻断高频信号。
这种滤波器可以用于音频处理、图像处理以及信号传输等领域。
低通滤波器的工作原理是利用电容和电感的相互作用,将高频成分分离并滤除。
二、高通滤波器高通滤波器与低通滤波器相反,它能够通过高频信号,并阻断低频信号。
在音频系统中,高通滤波器常用于消除低频杂音和低频噪声。
高通滤波器的工作原理是利用电容和电感的组合,将低频成分滤除。
三、带通滤波器带通滤波器是一种能够选择一定频率范围内信号的滤波器。
它可以同时阻断低频和高频信号,只允许中间频率范围的信号通过。
带通滤波器广泛应用于无线通信、雷达系统以及音频设备等领域。
它的工作原理是通过组合低通滤波器和高通滤波器来实现对频率的选择性。
四、带阻滤波器带阻滤波器是一种能够阻断一定频率范围内信号的滤波器。
它与带通滤波器相反,只允许低频和高频信号通过,而阻断中间频率范围的信号。
带阻滤波器被广泛应用于抑制特定频率的干扰信号和噪声。
其工作原理是通过将低通滤波器和高通滤波器串联,实现对特定频率范围的阻断。
五、数字滤波器数字滤波器是一种基于数字信号处理的滤波器。
与模拟滤波器相比,数字滤波器具有更好的灵活性和可调性。
它可以通过对数字信号进行采样和离散处理来实现滤波效果。
数字滤波器广泛应用于音频处理、图像处理、无线通信等领域。
六、激励响应滤波器激励响应滤波器是一种通过输入激励信号和滤波器的单位冲激响应来实现滤波效果的滤波器。
它根据不同的输入激励信号形状和滤波器响应特性,可以实现各种滤波效果,如低通、高通、带通和带阻等。
七、滤波器工作原理滤波器的工作原理基于信号的频率分量和滤波器的频率响应特性之间的相互作用。
当信号经过滤波器时,滤波器会根据其特定的频率响应特性对信号的各个频率分量进行加权调整或滤除,从而实现对信号频谱的调整或筛选。
滤波器的基本原理及应用滤波器是一种电子设备,可以通过选择或排除特定的频率成分,改变信号的频谱特性。
在电子工程中,滤波器被广泛应用于信号处理、通信系统、音频设备等领域。
本文将介绍滤波器的基本原理及其在各个领域的应用。
一、滤波器的基本原理滤波器的基本原理是通过将特定频率范围内的信号通过,而将其他频率范围内的信号削弱或排除。
它主要依赖于电路中的电容、电感和电阻等元件来实现频率的选择性传递。
根据滤波器对于不同频率的处理方式,可以将其分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等四种类型。
1. 低通滤波器低通滤波器允许低频信号通过,并将高频信号削弱。
它常用于音频设备中,用于去除高频噪声,保留低频音乐信号。
此外,低通滤波器还广泛应用于通信系统中,以滤除高频干扰和杂波,保证信号的清晰度和稳定性。
2.高通滤波器高通滤波器允许高频信号通过,并将低频信号削弱。
它常用于音频设备中,用于去除低频噪声,提升高频音乐信号。
在图像处理领域,高通滤波器也被用于边缘检测和图像增强等应用。
3.带通滤波器带通滤波器允许特定频率范围内的信号通过,而将其他频率范围内的信号削弱。
它广泛应用于无线通信系统中,用于接收或发送特定频段的信号。
此外,带通滤波器还被用于调音台、电视调谐器和无线电接收机等设备中。
4.带阻滤波器带阻滤波器将特定频率范围内的信号削弱,而将其他频率范围内的信号通过。
它常用于抑制特定频率噪声或干扰信号。
在音频放大器和无线电发射机等设备中,带阻滤波器被用于消除杂音和干扰。
二、滤波器的应用领域滤波器在电子工程中有着广泛的应用,以下是几个常见的领域:1.音频设备音频设备如音响系统、耳机等通常会使用滤波器来调整音频信号的频谱特性。
通过采用不同类型的滤波器,可以实现低音增强、高音增强、降噪等音效处理。
2.通信系统在通信系统中,滤波器被用于滤除噪声、杂波和干扰信号,提高通信质量。
无线通信系统、调制解调器、数字通信系统等都需要滤波器进行信号处理和调节。
滤波器工作原理滤波器工作原理滤波器是一种常见的电子元器件,它能够改变信号的频率特性。
它在许多场合都有应用,比如音频放大器、调制解调器、射频接收机、传感器等。
它的基本作用是滤除信号中的不需要部分,保留需要的部分。
本文将介绍滤波器的工作原理及其分类。
一、滤波器的工作原理滤波器的工作原理是基于信号的频率特性。
我们知道,信号可以分解为许多不同频率的正弦波的叠加。
不同频率的正弦波有不同的振幅、相位和周期。
滤波器的作用是改变信号中不同频率正弦波的振幅、相位和周期,从而实现滤波的效果。
滤波器可以分为两类:激励型滤波器和反馈型滤波器。
激励型滤波器是指在滤波器的输入端加入激励信号,根据不同频率带通或者带阻,选择不同频率的信号输出。
反馈型滤波器则确定了一个中心频率的波形,将输入信号同中心频率波形做比较,不同的输出信号作出响应。
二、滤波器的分类根据滤波器的工作原理和滤波特性,滤波器可以分为以下几类:1. 低通滤波器低通滤波器指滤除高频部分的滤波器,只保留低频分量。
常见的低通滤波器有RC低通滤波器、LC低通滤波器和第一阶无源滤波器等。
它们的滤波效果逐渐变弱,而且相位变化不同。
2. 高通滤波器高通滤波器指滤除低频部分的滤波器,只保留高频分量。
常见的高通滤波器有RC高通滤波器、LC高通滤波器和第一阶无源滤波器等。
它们的滤波效果逐渐变弱,而且相位变化不同。
3. 带通滤波器带通滤波器指只保留某个范围内频率分量的滤波器。
带通滤波器可以分为两类:通带较窄的窄带滤波器和通带较宽的宽带滤波器。
常见的带通滤波器有RLC带通滤波器和第二阶有源滤波器等。
4. 带阻滤波器带阻滤波器指在某个频率范围内将信号滤除的滤波器。
常见的带阻滤波器有RLC带阻滤波器和巴特沃斯滤波器等。
5. 共模滤波器共模滤波器是指在差分信号中滤除共模干扰的滤波器。
常见的共模滤波器有差分线路、共模电感线圈和智能共模滤波器等。
滤波器的选择取决于特定的应用需求。
在设计滤波器时,需要考虑到滤波器的频率特性、频率响应和滤波器的幅值和相位响应等。
什么是滤波器它在电子电路中的作用是什么滤波器是一种电子元件,其作用是对电路中的电信号进行过滤和调整,以达到去除噪声、改变信号频率、调整振幅等目的。
它在电子电路中扮演着重要的角色,为电子设备提供了准确稳定的信号。
一、滤波器的基本原理滤波器基于电路中的电容、电感和电阻等元件,通过对电信号的传输特性进行调整,实现对特定频率信号的放大或削弱。
根据不同的需求,滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等不同类型。
二、滤波器的作用1. 去除噪声:在电子设备中,常常会受到来自外部环境的电磁干扰或者电路本身的噪声干扰,这些干扰信号会在信号传输过程中引入误差,影响设备的性能和准确度。
滤波器可以通过消除不必要的频率成分,降低噪声的影响,提高信号的质量和稳定性。
2. 改变信号频率:有些情况下,需要调整信号的频率,以满足特定的使用需求。
例如,音频放大器需要将输入信号调整至合适的频率范围,以便扬声器能够有效地发出声音。
滤波器可以根据所需频率范围来选择性地放大或削弱信号频率,实现频率调整的功能。
3. 调整振幅:振幅指信号的幅度大小。
在电子电路中,有时需要调整信号的振幅以适应不同的工作环境。
滤波器可以通过对特定频率范围的信号进行放大或削弱,来调整信号的振幅,使其符合要求。
4. 阻隔干扰信号:除了噪声干扰外,电子设备中还可能受到来自其他信号源的干扰。
这些干扰信号会干扰正常的信号传输和工作。
滤波器可以选择性地阻隔特定频率的干扰信号,从而保证设备的正常运行。
5. 平滑波形:在某些电路中,要求信号的波形平滑,没有剧烈的变化。
滤波器可以通过对信号进行滤波处理,消除波形中的尖峰和波动,使其更加平滑,符合要求。
三、滤波器的应用领域滤波器广泛应用于各种电子设备和系统中,包括通信设备、音频设备、视频设备、电源系统等。
以下是一些常见的应用领域:1. 通信设备:在通信设备中,滤波器用于滤除噪声和干扰信号,确保信号的质量和准确度。
滤波器原理滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。
在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。
广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。
因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。
因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。
本文所述内容属于模拟滤波范围。
主要介绍模拟滤波器原理、种类、数学模型、主要参数、RC滤波器设计。
尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。
带通滤波器二、滤波器分类⒈根据滤波器的选频作用分类⑴低通滤波器从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。
⑵高通滤波器与低通滤波相反,从频率f1~∞,其幅频特性平直。
它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。
⑶带通滤波器它的通频带在f1~f2之间。
它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。
⑷带阻滤波器与带通滤波相反,阻带在频率f1~f2之间。
它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。
低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。
低通滤波器与高通滤波器的串联低通滤波器与高通滤波器的并联⒉根据“最佳逼近特性”标准分类⑴巴特沃斯滤波器从幅频特性提出要求,而不考虑相频特性。
巴特沃斯滤波器具有最大平坦幅度特性,其幅频响应表达式为:⑵切比雪夫滤波器切贝雪夫滤波器也是从幅频特性方面提出逼近要求的,其幅频响应表达式为:ε是决定通带波纹大小的系数,波纹的产生是由于实际滤波网络中含有电抗元件;T n是第一类切贝雪夫多项式。
与巴特沃斯逼近特性相比较,这种特性虽然在通带内有起伏,但对同样的n值在进入阻带以后衰减更陡峭,更接近理想情况。
ε值越小,通带起伏越小,截止频率点衰减的分贝值也越小,但进入阻带后衰减特性变化缓慢。
切贝雪夫滤波器与巴特沃斯滤波器进行比较,切贝雪夫滤波器的通带有波纹,过渡带轻陡直,因此,在不允许通带内有纹波的情况下,巴特沃斯型更可取;从相频响应来看,巴特沃斯型要优于切贝雪夫型,通过上面二图比较可以看出,前者的相频响应更接近于直线。
⑶贝塞尔滤波器只满足相频特性而不关心幅频特性。
贝塞尔滤波器又称最平时延或恒时延滤波器。
其相移和频率成正比,即为一线性关系。
但是由于它的幅频特性欠佳,而往往限制了它的应用。
二、理想滤波器理想滤波器是指能使通带内信号的幅值和相位都不失真,阻带内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。
也就是说,理想滤波器在通带内的幅频特性应为常数,相频特性的斜率为常值;在通带外的幅频特性应为零。
理想低通滤波器的频率响应函数为:其幅频及相频特性曲线为:分析上式所表示的频率特性可知,该滤波器在时域内的脉冲响应函数h(t)为sinc函数,图形如下图所示。
脉冲响应的波形沿横坐标左、右无限延伸,从图中可以看出,在t=0时刻单位脉冲输入滤波器之前,即在t<0时,滤波器就已经有响应了。
显然,这是一种非因果关系,在物理上是不能实现的。
这说明在截止频率处呈现直角锐变的幅频特性,或者说在频域内用矩形窗函数描述的理想滤波器是不可能存在的。
实际滤波器的频域图形不会在某个频率上完全截止,而会逐渐衰减并延伸到∞。
三、实际滤波器⒈实际滤波器的基本参数理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。
在通带和阻带之间存在一个过渡带。
在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。
当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。
因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。
如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。
由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。
⑴纹波幅度d在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。
⑵截止频率f c幅频特性值等于0.707A0所对应的频率称为滤波器的截止频率。
以A0为参考值,0.707A0对应于-3dB点,即相对于A0衰减3dB。
若以信号的幅值平方表示信号功率,则所对应的点正好是半功率点。
⑶带宽B和品质因数Q值上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。
带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。
在电工学中,通常用Q代表谐振回路的品质因数。
在二阶振荡环节中,Q值相当于谐振点的幅值增益系数,Q=1/2ξ(ξ——阻尼率)。
对于带通滤波器,通常把中心频率f0()和带宽B之比称为滤波器的品质因数Q。
例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q 值为50。
Q值越大,表明滤波器频率分辨力越高。
⑷倍频程选择性W在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带的幅频曲线倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。
通常用倍频程选择性来表征。
所谓倍频程选择性,是指在上截止频率f c2与2f c2之间,或者在下截止频率f c1与f c1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。
显然,衰减越快(即W值越大),滤波器的选择性越好。
对于远离截止频率的衰减率也可用10倍频程衰减数表示之。
即[dB/10oct]。
⑸滤波器因数(或矩形系数)滤波器因数是滤波器选择性的另一种表示方式,它是利用滤波器幅频特性的-60dB带宽与-3dB带宽的比值来衡量滤波器选择性,记作,即理想滤波器=1,常用滤波器=1-5,显然,越接近于1,滤波器选择性越好。
四、RC无源滤波器在测试系统中,常用RC滤波器。
因为在这一领域中,信号频率相对来说不高。
而RC滤波器电路简单,抗干扰性强,有较好的低频性能,并且选用标准的阻容元件,所以在工程测试的领域中最经常用到的滤波器是RC滤波器。
⒈一阶RC低通滤波器RC低通滤波器的电路及其幅频、相频特性如下图所示设滤波器的输入电压为e x,输出电压为e y,电路的微分方程为这是一个典型的一阶系统。
令=RC,称为时间常数,对上式取拉氏变换,有或其幅频、相频特性公式为:分析可知,当f很小时,A(f)=1,信号不受衰减地通过;当f很大时,A(f)=0,信号完全被阻挡,不能通过。
低通滤波器的上载止频率⒉一阶RC高通滤波器RC高通滤波器的电路及其幅频、相频特性如下图所示设滤波器的输入电压为e x输出电压为e y,电路的微分方程为:同理,令=RC,对上式取拉氏变换,有:或其幅频、相频特性公式为:分析可知,当f很小时,A(f)=0,信号完全被阻挡,不能通过;当f很大时,A(f)=1,信号不受衰减的通过。
⒊RC带通滤波器带通滤波器可以看作为低通滤波器和高通滤波器的串联,其电路及其幅频、相频特性如下图所示。
其幅频、相频特性公式为:式中H1(s)为高通滤波器的传递函数,H2(s)为低通滤波器的传递函数。
有:这时极低和极高的频率成分都完全被阻挡,不能通过;只有位于频率通带内的信号频率成分能通过。
下截止频率:上截止频率:应注意,当高、低通两级串联时,应消除两级耦合时的相互影响,因为后一级成为前一级的“负载”,而前一级又是后一级的信号源内阻。
实际上两级间常用射极输出器或者用运算放大器进行隔离。
所以实际的带通滤波器常常是有源的。
有源滤波器由RC调谐网络和运算放大器组成。
运算放大器既可起级间隔离作用,又可起信号幅值的放大作用。
五、模拟滤波器的应用模拟滤波器在测试系统或专用仪器仪表中是一种常用的变换装置。
例如带通滤波器用作频谱分析仪中的选频装置;低通滤波器用作数字信号分析系统中的抗频混滤波;高通滤波器被用于声发射检测仪中剔除低频干扰噪声;带阻滤波器用作电涡流测振仪中的陷波器等。
用于频谱分析装置中的带通滤波器,可根据中心频率与带宽之间的数值关系,分为两种一种是带宽B不随中心频率而变化,称为恒带宽带通滤波器,如图所示,其中心频率处在任何频段上时,带宽都相同;另一种是带宽B与中心频率的比值是不变的,称为恒带宽比带通滤波器,如图所示,其中心频率越高,带宽也越宽。
一般情况下,为使滤波器在任意频段都有良好的频率分辨力,可采用恒带宽带通滤波器(如收音机的选频)。
所选带宽越窄,则频率分辨力越高,但这时为覆盖所要检测的整个频率范围,所需要的滤波器数量就很大。
因此,在很多时候,恒带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化。
在做信号频谱分析的过程中,参考信号是由可作频率扫描的信号发生器供给的。
这种可变中心频率的恒带宽带通滤波器被用于相关滤波和扫描跟踪滤波中。
恒带宽比带通滤波器被用于倍频程频谱分析仪中,这是一种具有不同中心频率的滤波器组,为使各个带通滤波器组合起来后能覆盖整个要分析的信号频率范围,其中心频率与带宽是按一定规律配置的。
假若任一个带通滤波器的下截止频率为f c1,上截止频率为f c2,令f c1与f c2之间的关系为:f c1=2n f c1式中n值称为倍频程数,若n=1,称为倍频程滤波器;n=1/3,则称为1/3倍频程滤波器。
滤波器的中心频率f0取为几何平均值,即:根据上述两式,可以得:则滤波器带宽:如果用滤波器的品质因数Q值来表示,则有:故倍频程滤波器,若n=l,则Q=1.41;若n=1/3,则Q=4.38;若n=1/5,则Q=7.2。
倍频数n值越小,则Q值越大,表明滤波器分辨力越高。
根据上述关系,就可确定出常用倍频程滤波器的中心频率f0和带宽B值。
为了使被分析信号的频率成分不致丢失,带通滤波器组的中心频率是倍频程关系,同时带宽又需是邻接式的,通常的做法是使前一个滤波器的一3dB上截止频率与后一个滤波器的一3dB下截止频率相一致,如图所示。
这样的一组滤波器将覆盖整个频率范围,称之为“邻接式”的。
下图表示了邻接式倍频程滤波器,方框内数字表示各个带通滤波器的中心频率,被分析信号输入后,输入、输出波段开关顺序接通各滤波器,如果信号中有某带通滤波器通频带内的频率成分,那么就可以在显示、记录仪器上观测到这一频率成分。