上海市虹口区2014年中考一模(即期末)数学试题(扫描版)
- 格式:doc
- 大小:442.50 KB
- 文档页数:4
2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).;;(C)(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.12二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________. 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数k y x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =,BC b =,那么DE =_______________(结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________. 17.一组数:2, 1, 3, x , 7, y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.3 18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分101382+.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD、CB相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD ,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .424.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.5 25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9; 18、. 三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、23、(1)求证:四边形ACED 是平行四边形;(2)联结AE,交BD于点G,求证:DG DFGB DB.24、25、6。
2013-2014年上海市虹口区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.(4分)(2014•虹口区一模)下列函数中,属于二次函数的是()A.y=B.y=2(x+1)(x﹣3)C.y=3x﹣2D.y=【考点】二次函数的定义.【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【解答】解:A、y=是反比例函数,故本选项错误;B、y=2(x+1)(x﹣3)=2x2﹣4x﹣6,是二次函数,故本选项正确;C、y=3x﹣2是一次函数,故本选项错误;D、y==x+,不是二次函数,故本选项错误.故选B.【点评】本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.2.(4分)(2014•虹口区一模)抛物线y=x2﹣3x+2与y轴交点的坐标是()A.(0,0)B.(2,0)C.(0,2)D.(0,﹣1)【考点】二次函数图象上点的坐标特征.【分析】令x=0,求出y的值即可得解.【解答】解:x=0时,y=2,所以,抛物线与y轴的交点坐标为(0,2).故选C.【点评】本题考查了二次函数图象上点的坐标特征,是基础题.3.(4分)(2014•孝感一模)在Rt△ABC中,∠C=90°,若a、b、c分别是∠A、∠B、∠C 的对边,则下列结论中,正确的是()A.c•sinA=a B.b•cosB=c C.a•tanA=b D.c•tanB=b【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义就可以求解.【解答】解:∵由锐角三角函数的定义可知sinA=,cosB=,tanA=,tanB=,∴c•sinA=a.故选A.【点评】本题考查的是锐角三角函数的定义,比较简单,是基础题.4.(4分)(2014•虹口区一模)如图,若AB∥CD∥EF,则下列结论中,与相等的是()A.B.C.D.【考点】平行线分线段成比例.【分析】根据AB∥CD∥EF,结合平行线分线段成比例定理可知BO:OC=AO:OD,AD:DF=BC:CE,由此可得出结论.【解答】解:根据AB∥CD∥EF得到:=.故选:D.【点评】本题考查了平行线分线段成比例定理,解题的关键是找准对应线段.5.(4分)(2014•虹口区一模)如图,在△ABC中,如果DE与BC不平行,那么下列条件中,不能判断△ADE∽△ABC的是()A.∠ADE=∠C B.∠AED=∠B C.D.【考点】相似三角形的判定.【分析】根据相似三角形的判定方法:(1)三组对应边的比相等的两个三角形相似;(2)两组对应边的比相等且夹角对应相等的两个三角形相似;(3)有两组角对应相等的两个三角形相似,结合选项进行判断即可.【解答】解:A、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故本选项错误;B、∠B=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故本选项错误;C、=,此时不等确定∠ADE=∠ACB,故不能确定△ADE∽△ACB,故本选项正确;D、=,∠A=∠A,则可判断△ADE∽△ACB,故本选项错误.故选C.【点评】此题考查了相似三角形的判定,属于基础题,关键是掌握相似三角形的几种判定定理.6.(4分)(2014•虹口区一模)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,若EF=2,BC=5,CD=3,则sinC的值为()A.B.C.D.【考点】勾股定理的逆定理;三角形中位线定理;锐角三角函数的定义.【分析】根据中位线的性质得出EF∥BD,且等于BD,进而得出△BDC是直角三角形,求出即可.【解答】解:连接BD,则EF是△ABD的中位线,∴BD=4,在△BCD中,∵32+42=52,∴△BCD是以D点为直角顶点的直角三角形,∴sinC==.故选D.【点评】此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.二、填空题(本大题共12小题,每小题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(2014•虹口区一模)已知x:y=3:2,那么(x+y):x=5:3.【考点】比例的性质.【分析】用x表示出y,然后代入比例式进行计算即可得解.【解答】解:∵x:y=3:2,∴y=x,∴(x+y):x=(x+x):x=5:3.故答案为:5:3.【点评】本题考查了比例的性质,用x表示出y是解题的关键.8.(4分)(2014•虹口区一模)计算:cos45°+sin260°=.【考点】特殊角的三角函数值.【分析】将cos45°=,sin60°=代入求解.【解答】解:原式=×+()2=1+=.故答案为:.【点评】本题考查了特殊角的三角函数值,解答本题的关键是熟记几个特殊角的三角函数值.9.(4分)(2014•虹口区一模)在Rt△ABC中,∠C=90°,若AC=5,tanA=2,则BC=10.【考点】锐角三角函数的定义.【分析】根据正切函数的定义即可求解.【解答】解:∵tanA=,∴BC=AC•tanA=5×2=10.故答案是:10.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切为邻边比对边.10.(4分)(2014•虹口区一模)写出抛物线y=与抛物线y=﹣的一条共同特征是顶点坐标均为(0,0)(答案不唯一).【考点】二次函数的性质.【分析】根据形如y=ax2的形式的二次函数的性质直接说出即可.【解答】解:∵抛物线y=与抛物线y=﹣的二次项系数互为相反数,∴两条抛物线关于x轴对称,∴抛物线y=与抛物线y=﹣的共同特征为:顶点坐标均为(0,0),对称轴均为y轴等,故答案为:顶点坐标均为(0,0)(答案不唯一).【点评】本题考查了二次函数的性质,解题的关键是熟记形如y=ax2的形式的二次函数的性质.11.(4分)(2014•虹口区一模)已知抛物线y=﹣2(x﹣3)2+1,当x1>x2>3时,y1<y2.(填“>”或“<”)【考点】二次函数图象上点的坐标特征.【分析】根据x>3时,抛物线的y的值随x的增大而减小解答.【解答】解:∵﹣2<0,对称轴为直线x=3,∴x>3时,y的值随x的增大而减小,∵x1>x2>3,∴y1<y2.故答案为:<.【点评】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.12.(4分)(2014•虹口区一模)将抛物线y=﹣3x2平移,使其顶点到点P(﹣2,1)的位置,则所得新抛物线的表达式是y=﹣3(x+2)2+1.【考点】二次函数图象与几何变换.【分析】根据平移只改变图形的位置不改变图形的形状与大小,利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣3x2平移后其顶点到点P(﹣2,1)的位置,∴所得新抛物线的表达式是y=﹣3(x+2)2+1.故答案为:y=﹣3(x+2)2+1.【点评】本题考查了二次函数图象与几何变换,此类题目利用顶点的平移解答更简便.13.(4分)(2014•虹口区一模)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为(﹣2,﹣2).【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性解答即可.【解答】解:∵x=﹣3、x=﹣1时的函数值都是﹣3,相等,∴函数图象的对称轴为直线x=﹣2,顶点坐标为(﹣2,﹣2).故答案为:(﹣2,﹣2).【点评】本题考查了二次函数图象上点的坐标特征,熟记二次函数的对称性是解题的关键.14.(4分)(2014•虹口区一模)如图,在△ABC中,EF∥BC,AD⊥BC交EF于点G,EF=4,BC=5,AD=3,则AG=.【考点】相似三角形的判定与性质.【分析】根据EF∥BC可以得到△AEF∽△ABC,然后根据相似三角形的对应高的比等于相似比,即可求得.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,即=,解得:AG=.故答案是:.【点评】本题考查了相似三角形的判定与性质,理解相似三角形的对应高的比等于相似比是关键.15.(4分)(2014•虹口区一模)如图,点G是△ABC的重心,GF∥BC,=,=,用、表示=﹣.【考点】*平面向量;三角形的重心.【分析】根据图示知=﹣.然后根据三角形重心的性质(重心到顶点的距离与重心到对边中点的距离之比为2:1),求得||与||的数量关系,然后再根据平面向量与的方向来确定它们之间的关系.【解答】解:如图,=﹣,即=﹣.∵GF∥BC,∴AG:AD=GF:BC;又∵点G是△ABC的重心,∴AG:AD=2:3,∴GF:DC=2:3;即:=2:3;∵=3,∴==﹣.故答案是:﹣.【点评】本题主要考查了三角形的重心、平面向量.在解答此题时要注意两点:①三角形的重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1,即AG:GD=2:1,而不是AG:AD=2:1;②平面向量是有方向的.16.(4分)(2015•简阳市模拟)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为.【考点】锐角三角函数的定义;等腰直角三角形.【分析】首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.【解答】解:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为.故答案为:.【点评】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.17.(4分)(2014•虹口区一模)如图,某公园入口处原有三级台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i=1:5,则AC的长度是240cm.【考点】解直角三角形的应用-坡度坡角问题.【分析】如图所示:所有台阶高度和为BD的长,所有台阶深度和为AD的长,即BD=60m,AD=60m.然后根据坡度比解答即可.【解答】解:由题可知BD=60cm,AD=60cm.∵tan∠BCA==∴DC=300cm,∴AC=DC﹣AD=300﹣60=240(cm).答:AC的长度是240cm,故答案为:240.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).18.(4分)(2014•虹口区一模)如图,Rt△ABC中,∠C=90°,AB=5,AC=3,在边AB上取一点D,作DE⊥AB交BC于点E,先将△BDE沿DE折叠,使点B落在线段DA上,对应点记为B1;BD的中点F的对应点记为F1.若△EFB∽△AF1E,则B1D=.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】利用勾股定理列式求出BC,设BD=2x,得到BF=FD=DF1=B1F1=x,然后求出AF1,再利用相似三角形对应边成比例列式求出DE,然后利用勾股定理列式求出F1E,然后根据相似三角形对应边成比例列式求解得到x的值,从而可得B1D的值.【解答】解:如图,∵在Rt△ABC中,∠C=90°,AB=5,AC=3,∴BC===4,设BD=2x,∵点F为BD的中点,将△BDE沿DE折叠,点B对应点记为B1,点F的对应点为F1,∴BF=FD=DF1=B1F1=x,∵DE⊥AB,∠ACB=90°,∠B=∠B,∴△ABC∽△EBD,∴=,即=,解得DE=x,在Rt△DF1E中,E1F===,∴AF1=AB﹣BF1=5﹣3x根据题意知,EFB≌△EF1B1.∵△EFB∽△AF1E,∴△EF1B1∽△AF1E,∴=,∴EF12=AF1•B1F1,即()2=x(5﹣3x),解得x=,∴B1D的长为2×=.故答案为:.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.三、解答题(本大题共7小题,满分78分)19.(10分)(2014•虹口区一模)已知一个二次函数的图象经过(3,0)、(0,﹣3)、(1,﹣4)三点,求这个二次函数的解析式.【考点】待定系数法求二次函数解析式.【分析】设二次函数的解析式为y=ax2+bx+c,然后把三个点的坐标代入得到关于a、b、c 的方程组,再解方程组即可.【解答】解:设二次函数的解析式为y=ax2+bx+c,根据题意得,解得,所以二次函数的解析式为y=x2﹣2x﹣3.【点评】用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(10分)(2014•虹口区一模)已知二次函数y=﹣﹣x+.(1)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式;(2)指出该二次函数图象的开口方向、顶点坐标和对称轴.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)根据配方法的操作整理即可得解;(2)根据a小于0确定出抛物线开口向下,根据顶点式解析式写出顶点坐标和对称轴.【解答】解:(1)y=﹣x2﹣x+,=﹣(x2+2x+1)++,=﹣(x+1)2+4;(2)∵a=﹣<0,∴二次函数图象的开口向下,顶点坐标为(﹣1,4),对称轴为直线x=﹣1.【点评】本题考查了二次函数的三种形式的转化,二次函数的性质,熟练掌握配方法的操作以及根据顶点式形式写出对称轴和顶点坐标的方法是解题的关键.21.(10分)(2014•虹口区一模)如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,BE⊥AE,垂足为点E.求证:BE2=DE•AE.【考点】相似三角形的判定与性质.【分析】若要证明BE2=DE•AE则问题可转化为证明比例线段所在的三角形相似即可,即△BDE∽△BAE.【解答】证明:∵AD是∠CAB的角平分线,∴∠CAD=∠BAD,∵∠C=90°,∴∠CAD+∠ADC=90°,∵BE⊥AE,∴∠E=90°,∴∠EBD+∠BDE=90°,∵∠ADC=∠BDE,∴∠BAD=∠DBE,∴△BDE∽△ABE,∴BE:AE=DE:BE,∴BE2=DE•AE.【点评】本题考查了比例式的证明,解题的一般思路是比例线段所在的三角形相似,同时也考查了对顶角相等这样性质,是一道不错的中考题.22.(10分)(2014•虹口区一模)我国南水北调中线工程的起点是某水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的156米增加到173.2米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=69°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡坡底端水平方向增加的宽度AC.(参考数据:sin69°≈0.93,cos69°≈0.36,tan69°≈2.60,≈1.732)【考点】解直角三角形的应用-坡度坡角问题.【分析】在直角△ABE中利用三角函数求得AE的长,然后再在直角△CDE中求得CE,根据AC=CE﹣AE即可求解.【解答】解:在直角△ABE中,tan∠BAE=,则AE=≈=60(米);同理,CE===≈100(米),则AC=CE﹣AE=100﹣60=40(米).答:求工程完工后背水坡坡底端水平方向增加的宽度AC是40米.【点评】本题考查了坡度坡角,正确理解三角函数的定义是关键.23.(12分)(2014•虹口区一模)在△ABC中,∠BAC=90°,∠EAF=90°,AB•AF=AC•AE.(1)求证:△AGC∽△DGB;(2)若点F为CG的中点,AB=3,AC=4,tan∠DBG=,求DF的长.【考点】相似三角形的判定与性质.【分析】(1)利用两边的比值相等并且它们的夹角相等的两个三角形相似即可先证明:△EAB∽△CAF,由此得到∠DBG=∠ACF,进而可证明△AGC∽△DGB;(2)由(1)可证明:△AGC∽△DGB,所以∠CAG=∠GDB=90°,所以△BDG是直角三角形,并且tan∠DBG=tan∠ACG=,由此DG可求,再根据已知条件求出GF的长即可得到DF的长.【解答】解:(1)∵∠BAC=90°,∠EAF=90°,∴∠EAF+∠GAF=∠CAF+GAF=90°,∴∠EAB=∠CAF,∵AB•AF=AC•AE,∴,∴∠DBG=∠ACF,∵∠DGB=∠AGC,∴△AGC∽△DGB;(2)∵△AGC∽△DGB;∴∠DBG=∠ACG,△DGB是直角三角形,∵tan∠DBG=,∴tan∠ACG=,∵AC=4,∴AG=2,∴CG==2,∵AB=3,∴BG=AB﹣AG=1,∵tan∠DBG=,∴DG=,∴DF=DG+GF=+=.【点评】本题考查了相似三角形的判定和性质、勾股定理的运用、解直角三角形的知识,题目的综合性很强,难度不小,对学生的解题能力要求很高,是一道不错的中考题.24.(12分)(2014•虹口区一模)如图,已知抛物线y=x2+bx+c经过点B(﹣4,0)与点C(8,0),且交y轴于点A.(1)求该抛物线的表达式,并写出其顶点坐标;(2)将该抛物线向上平移4个单位,再向右平移m个单位,得到新抛物线.若新抛物线的顶点为P,联接BP,直线BP将△ABC分割成面积相等的两个三角形,求m的值.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数解析式即可,进而利用配方法求出顶点坐标;(2)利用三角形中线平分面积进而得出PP过AC中点,进而得出BP解析式,求出P点坐标即可得出答案.【解答】解:(1)将点B(﹣4,0)与点C(8,0),代入解析式得:,解得:,∴该抛物线的表达式为:y=x2﹣x﹣8,y=x2﹣x﹣8=(x2﹣4x)﹣8=(x﹣2)2﹣9,∴顶点坐标为:(2,﹣9);(2)∵y=x2﹣x﹣8交y轴于点A,∴A(0,﹣8),根据题意得出:平移后解析式为:y=(x﹣2﹣m)2﹣5,∵直线BP将△ABC分割成面积相等的两个三角形,∴P为AC中点,∵A(0,﹣8),C(8,0),∴AC的中点坐标为:(4,﹣4),∴设BP的解析式为:y=ax+h,,解得:,∴BP的解析式为:y=﹣x﹣2,即直线过BP中点P(2+m,﹣5),﹣5=﹣(2+m)﹣2解得:m=4.【点评】此题主要考查了二次函数综合应用以及待定系数法求二次和一次函数解析式,利用三角形中线平分面积得出是解题关键.25.(14分)(2015•武汉模拟)已知:正方形ABCD的边长为4,点E为BC的中点,点P 为AB上一动点,沿PE翻折△BPE得到△FPE,直线PF交CD边于点Q,交直线AD于点G,联接EQ.(1)如图,当BP=1.5时,求CQ的长;(2)如图,当点G在射线AD上时,BP=x,DG=y,求y关于x的函数关系式,并写出x 的取值范围;(3)延长EF交直线AD于点H,若△CQE与△FHG相似,求BP的长.【考点】相似形综合题.【分析】(1)首先确定∠PEQ=90°,即PE⊥EQ,然后利用△PBE∽△ECQ,列出比例式求出CD的长度;(2)根据△PBE∽△ECQ,求出DQ的表达式;由QD∥AP,列出比例式求解;(3)本问分两种情形,需要分类讨论,避免漏解.【解答】解:(1)由翻折性质,可知PE为∠BPQ的角平分线,且BE=FE.∵点E为BC中点,∴EC=EB=EF,∴QE为∠CQP的角平分线.∵AB∥CD,∴∠BPQ+∠CQP=180°,即2∠EPQ+2∠EQP=180°,∴∠EPQ+∠EQP=90°,∴∠PEQ=90°,即PE⊥EQ.易证△PBE∽△ECQ,∴,即,解得:CQ=.(2)由(1)知△PBE∽△ECQ,∴,即,∴CQ=,∴DQ=4﹣.∵QD∥AP,∴,又AP=4﹣x,AG=4+y,∴,∴y=(1<x<2).(3)由题意知:∠C=90°=∠GFH.①当点G在线段AD的延长线上时,如答图1所示.由题意知:∠G=∠CQE∵∠CQE=∠FQE,∴∠DQG=∠FQC=2∠CQE=2∠G.∵∠DQG+∠G=90°,∴∠G=30°,∴∠BEP=∠CQE=∠G=30°,∴BP=BE•tan30°=;②当点G在线段DA的延长线上时,如答图2所示.由题意知:∠FHG=∠CQE.同理可得:∠G=30°,∴∠BPE=∠G=30°,∴∠BEP=60°,∴BP=BE•tan60°=.综上所述,BP的长为或.【点评】本题是几何综合题型,主要考查了相似三角形、正方形、解直角三角形、角平分线等几何知识点.难点在于第(3)问,有两种情形,不要漏解.。
2014年上海市初中毕业统一学业测试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ).(A)△ABD 和△ABC 的周长相等; (B)△ABD 和△ABC 的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带和水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班和初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数k y x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的分析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =u u u r r ,BC b =u u u r r ,那么DE u u u r =_______________(结果用a r 、b r 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕和边AD 交于点F ,D ′F 和BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)和水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度. 水银柱的长度x(cm )4.2 … 8.29.8体温计的读数y(℃)35.0 … 40.0 42.0 (1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别和CD 、CB 相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD =5,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分)223y x bx c =++和x 在平面直角坐标系中(如图),已知抛物线轴交于点A (-1,0)和点B ,和y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴和x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 和边AD 交于点E 、F (点F 在点E 的右侧),射线CE 和射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业测试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x p p ; 10、352 ; 11、1k p ; 12、26 ; 13、13; 14、1(0y k x=-p 即可); 15、23a b -r r ; 16、乙; 17、-9; 18、23t . 三、 解答题19、解:原式233=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.5 22、 5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=Q g g g 23、(1)求证:四边形ACED 是平行四边形;,//DE//,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴Q Q Q Y=等腰梯形,为为 (2)联结AE ,交BD 于点G ,求证:DG DF GB DB=. //,;,,;DG AD DF AD AD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=Q Q Q Y 为24、25、。
2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23⋅的结果是().(A) 5;(B) 6;(C) 23;(D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(A) ∠2;(B)∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的周长相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=_________.8.函数11yx=-的定义域是_________.9.不等式组12,28xx->⎧⎨<⎩的解集是_________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三鱼粉销售各种水笔_________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t的代数式表示).三、解答题(本题共7题,满分78分) 19.(本题满分10分) 计算:131128233--+-.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm )4.2… 8.2 9.8 体温计的读数y (℃) 35.0…40.042.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH . (1)求sin B 的值;(2)如果CD =5,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD . (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴; (2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cos B =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案选择题:1.B2.C3.C4.D5.A6.B填空题:7.a2+a8.x≠19.3<x<410.35211.k<112.2620.x=021. 37.522.BE=3 23题24题数学试卷及试题25题数学试卷及试题11。
2014年上海一模25题集锦1、(2014年一模宝山26题)、如图△ABC 中,0090305cm C A BC ∠=∠==,,;△DEF 中,090D ∠=,045E ∠=,3cm DE =. 现将△DEF 的直角边DF 与△AB C 的斜边AB 重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化,现设,AD x BE y ==,请你写出y 与x 之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得022.5EBD ∠= ?如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形? (本题6+8=14分)2、(2014年一模崇明25题)(本题满分14分,其中第1、2小题各5分,第3小题4分) 如图,在△ABC 中,AB =8,BC =10,3cos 4C =,2ABC C ∠=∠,BD 平分∠ABC 交AC 边于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且∠AEF =∠ABC ,AE 与BD 相交于点G 。
(1)求证:AB BGCE CF=; (2)设BE =x ,CF =y ,求y 与x 之间的函数关系式,并写出x 的取值范围; (3)当△AEF 是以AE 为腰的等腰三角形时,求BE 的长。
25、(1)证明:∵BD 平分ABC ∠∴2ABC ABD ∠=∠ ∵2ABC C ∠=∠∴ABD C ∠=∠∵AEC ABC BAE ∠=∠+∠ 即AEF FEC ABC BAE ∠+∠=∠+∠ ∵AEF ABC ∠=∠∴BAE FEC ∠=∠∴△ABG ∽△ECF ∴AB BGCE CF=B(2)过点A 作BC 的平行线交BD 的延长线于点M ∵AM ∥BC ∴∠M =∠DBC∵∠ABD =∠DBC ∴∠M =∠ABD ∴AM =AB =8 过点A 作AN MB ⊥,垂足为N∵3,cos ,4ABD C C AB AC ∠=∠==∴6,12BN MN BM === ∵AM ∥BC ∴AM MG BE BG =∴812BG x BG -=∴128xBG x =+ ∵AB BGCE CF =∴128810x x xy +=- ∴()2303010216x x y x x -=<<+(3)当△AEF 是以AE 为腰的等腰三角形时存在以下两种情况: 1°AE AF =,则AEF AFE ∠=∠易证明FE FC y ==, 又∵3cos 4C =易得32EC y =, 又∵10EC x =- ∴2023x y -=又∵2303216x x y x -=+解得()126.4,10x x ==舍去即BE 的长为6.42°EA EF =作线段CF 的垂直平分线交BC 于点H ,交FC 于点K ,联结HF 则易证△ABE ≌△EHF ,HF =HC ∴8,AB EH BE FH HC x =====∴2810x += ∴1x =即BE 的长为1综上所述,当△AEF 是以AE 为腰的等腰三角形时,BE 的长为6.4或1。
2014年上海一模25题集锦1、(2014年一模宝山26题)、如图△ABC 中,;△DEF 0090305cm C A BC ∠=∠==,,中,,,. 现将△DEF 的直角边DF 与△AB C 的斜边AB 090D ∠=045E ∠=3cm DE =重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化,现设,请你写出与之间的函数关系式及其定义域.,AD x BE y ==y x (2)请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得 ?如果存在,022.5EBD ∠=求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形? (本题6+8=14分)2、(2014年一模崇明25题)(本题满分14分,其中第1、2小题各5分,第3小题4分)如图,在△ABC 中,AB =8,BC =10,,,BD 平分∠ABC 交AC 边3cos 4C =2ABC C ∠=∠于点D ,点E 是BC 边上的一个动点(不与B 、C 重合),F 是AC 边上一点,且∠AEF =∠ABC ,AE 与BD 相交于点G 。
(1)求证:;AB BGCE CF=(2)设BE =x ,CF =y ,求y 与x 之间的函数关系式,并写出x 的取值范围;(3)当△AEF 是以AE 为腰的等腰三角形时,求BE 的长。
B25、(1)证明:∵BD 平分∴ABC ∠2ABC ABD ∠=∠∵∴2ABC C ∠=∠ABD C∠=∠∵ 即AEC ABC BAE ∠=∠+∠AEF FEC ABC BAE ∠+∠=∠+∠∵∴AEF ABC ∠=∠BAE FEC∠=∠∴△ABG ∽△ECF ∴AB BGCE CF=(2)过点A 作BC 的平行线交BD 的延长线于点M ∵AM ∥BC ∴∠M =∠DBC∵∠ABD =∠DBC ∴∠M =∠ABD ∴AM =AB =8过点A 作,垂足为NAN MB ⊥∵3,cos ,4ABD C C AB AC∠=∠==∴6,12BN MN BM ===∵AM ∥BC ∴∴∴AM MG BE BG =812BG x BG -=128xBG x =+∵∴AB BG CE CF =128810xx x y +=-∴()2303010216x x y x x -=<<+(3)当△AEF 是以AE 为腰的等腰三角形时存在以下两种情况:1°,则AE AF =AEF AFE∠=∠易证明, 又∵FE FC y ==3cos 4C =易得, 又∵32EC y =10EC x =-∴又∵2023x y -=2303216x x y x -=+解得()126.4,10x x ==舍去即BE 的长为6.42°EA EF=作线段CF 的垂直平分线交BC 于点H ,交FC 于点K ,联结HF 则易证△ABE ≌△EHF ,HF =HC ∴8,AB EH BE FH HC x=====∴2810x +=∴1x =即BE 的长为1综上所述,当△AEF 是以AE 为腰的等腰三角形时,BE 的长为6.4或1。
2014年上海市初中毕业统一学业考试数学试卷考生注意:.本试卷含三个大题,共 题;.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共 题,每题 分,满分 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】).;; ;.据统计, 年上海市全社会用于环境保护的资金约为 元,这个数用科学记数法表示为( ).; ; ;..如果将抛物线 = 向右平移 个单位,那么所得的抛物线的表达式是( ).= - ; = + ; = - ; = + ..如图,已知直线 、 被直线 所截,那么 的同位角是( ).(此题图可能有问题); ; ; ..某事测得一周 的日均值(单位:)如下:, , , , , , ,这组数据的中位数和众数分别是( ). 和 ; 和 ; 和 ; 和 ..如图,已知 、 是菱形 的对角线,那么下列结论一定正确的是( ).与 的周长相等; 与 的面积相等;菱形的周长等于两条对角线之和的两倍; 菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题 分,共 分)【请将结果直接填入答题纸的相应位置】.计算: + = ..函数11yx=-的定义域是 ..不等式组12,28xx->⎧⎨<⎩的解集是 ..某文具店二月份销售各种水笔 支,三月份销售各种水笔的支数比二月份增长了 ,那么该文具店三月份销售各种水笔 支..如果关于 的方程 - + = ( 为常数)有两个不相等的实数根,那么 的取值范围是..已知传送带与水平面所成斜坡的坡度 = ,如果它把物体送到离地面 米高的地方,那么物体所经过的路程为 米..如果从初三( )、( )、( )班中随机抽取一个班与初三( )班进行一场拔河比赛,那么恰好抽到初三( )班的概率是 ..已知反比例函数kyx=( 是常数, ),在其图像所在的每一个象限内, 的值随着 的值的增大而增大,那么这个反比例函数的解析式是 (只需写一个)..如图,已知在平行四边形 中,点 在边 上,且 = .设AB a=,BC b=,那么DE = (结果用a、b表示)..甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是 ..一组数: , , , , , , , ,满足 从第三个数起,前两个数依次为 、 ,紧随其后的数就是 - ,例如这组数中的第三个数 是由 - 得到的,那么这组数中 表示的数为 ..如图,已知在矩形 中,点 在边 上, = ,将矩形沿着过点 的直线翻折后,点 、 分别落在边 下方的点 、 处,且点 、 、 在同一条直线上,折痕与边 交于点 , 与 交于点 .设 = ,那么 的周长为 (用含 的代数式表示)三、解答题:(本题共 题,满分 分) .(本题满分 13128233-+..(本题满分 分)解方程:2121111x x x x +-=--+..(本题满分 分,第( )小题满分 分,第( )小题满分 分)已知水银体温计的读数 ( )与水银柱的长度 ( )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度( )体温计的读数( )( )求 关于 的函数关系式(不需要写出函数的定义域);( )用该体温计测体温时,水银柱的长度为 ,求此时体温计的读数..(本题满分 分,每小题满分各 分)如图,已知 中, = , 是斜边 上的中线,过点 作 , 分别与 、 相交于点 、 , = .( )求 的值;( )如果 =5,求 的值..(本题满分 分,每小题满分各 分)已知:如图,梯形 中, , = ,对角线 、 相交于点 ,点 是边 延长线上一点,且 = ..(本题满分 分,每小题满分各 分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与 轴交于点 - 和点 ,与 轴交于点 - .( )求该抛物线的表达式,并写出其对称轴;( )点 为该抛物线的对称轴与 轴的交点,点 在对称轴上,四边形 为梯形,求点 的坐标;( )点 为该抛物线的顶点,设点 ,且 > ,如果 和 的面积相等,求 的值..(本题满分 分,第( )小题满分 分,第( )小题满分 分,第( )小题满分 分)如图 ,已知在平行四边形 中, = , = , =45,点 是边 上的动点,以 为半径的圆 与边 交于点 、 (点 在点 的右侧),射线 与射线 交于点 .( )当圆 经过点 时,求 的长;( )联结 ,当 时,求弦 的长;( )当 是等腰三角形时,求圆 的半径长.图 备用图年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题、 ; 、 ; 、 ; 、 ; 、 ; 、二、 填空题、2a a +; 、1x ≠; 、34x ; 、352 ; 、1k ; 、26 ;、13; 、1(0y k x =-即可); 、23a b - ; 、乙; 、 ; 、.三、 解答题、解:原式=、0;1(x x ==舍)、 1.2529.75y x =+、5,sinB sinCAE B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=、( )求证:四边形 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为( )联结 ,交 于点 ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为、、。
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).; (C) ; (D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9;18、.三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、 5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23、(1)求证:四边形ACED 是平行四边形;,//DE//,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=. //,;,,;DG AD DF AD AD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BEDG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24、25、。