167;4.3含蜡原油的流变类型
- 格式:ppt
- 大小:164.50 KB
- 文档页数:15
含蜡原油不同特征温度流变性研究
含蜡原油在管输过程中随着温度的下降,蜡晶逐渐析出,降温速率的不均匀使得含蜡原油的析蜡特性发生改变。
前人在研究含蜡原油析蜡特性与流变性的过程中,对于析蜡特性多采用5℃/min的降温速率,而在流变性实验中使用的降温速率多是0.5℃/min,二者在降温速率上未达到一致。
本文利用差式扫描量热仪(DSC)在不同的降温速率下对含蜡原油进行测量,观察降温速率对含蜡原油析蜡特性的影响。
实验发现随着温降速率的减小,析蜡特性曲线上各特征温度点线性增大。
含蜡原油析蜡特性曲线上存在一个特征温度点—拐点,三种实验油样的拐点温度在凝点以上2~3℃。
用非等温结晶动力学计算出的另一特征温度点—转折点与反常点大致重合。
不同计算方法得出的特征点为生产实践中反常点与凝点的测量提供了方便。
利用RS150对含蜡原油进行小振幅振荡剪切实验,测量含蜡原油在线性黏弹性区间的储能模量与最大应力值,实验发现三种油样在拐点后结构强度增加较快,不利于含蜡原油停输再启动。
而0.5℃/min速率下测得的储能模量与结晶度符合良好的幂律关系。
在课题研究温度范围内,特征点将其划分为三个区间,分别对三个区间的流变性规律进行探讨,发现实验油样符合相同的规律。
第三章 原油的流变性第一节 原油的组成一、概述石油是一种多组分的复杂混合物。
组成石油的主要元素有碳、氢、氮、氧、硫及一些微量金属元素。
其中碳、氢的含量高达96%—99%,氮、氧、硫三元素的总量约为1%—4%。
微量元素有铁、镍、铜、钒、砷、磷等。
从油田开采得到而未经炼制加工的天然石油一般称原油。
上述元素都以有机化合物的形式存在于其中。
现已确认,组成原油的有机化合物可划分为由碳、氢构成的烃类化合物和含有硫、氮、氧等元素的非烃化合物两大类。
原油中的烃类化合物主要是烷烃、环烷烃和芳香烃,还有少量烯烃。
烷烃是原油的主要组分,其分子通式为,碳键属直键结构的称正构烷烃,带侧键或支键的称异构烷烃。
烷烃的物性与n 值有关。
在常温常压下,C 22+n n H C 1~C 4(即CH 4~C 4H 10)的烷烃呈气态,C 5~C 16的烷烃呈液态,C 17以上的烷烃呈固态。
n 值增加,熔点、沸点等物性也随之升高。
在常温常压下,烷烃的化学性质不活泼,因而稳定性好,在储存过程中不易氧化变质。
烷烃是非极性化合物,几乎不溶于水,但易溶于有机溶剂。
环烷烃是饱和的环状化合物,即碳原子以单键相互连成环状,其它价键为氢原子所饱和的化合物。
原油中环烷烃的含量仅次于正构烷烃,但比异构烷烃多,分子通式为H n C 2n 最简单的环烷烃是环丙炕烃C 3H 6。
环烷烃的碳原子数愈少愈不稳定。
它的密度、熔点、沸点比相同碳原子的烷烃的高,但密度仍小于1g/cm 3。
在常温常压下,n<5的环烷烃呈气态、(即环戊烷烃C 5H 10等呈气态),C 6~C 26的环烷烃呈液态,分子量更大的环烷烃呈固态。
芳香烃是苯环结构上带有不同烃基侧键的烃类化合物,在常温常压下,它呈液态或固态,它的密度比相同碳数的其它烃类大。
烯烃是碳原子之间具有双键的不饱和烃。
在常温常压下,碳原子数小于6的(即C 6)烯烃是气体,C 6以上的烯烃是液体,碳原子数更大的是固体。
尤其是在残渣油中原油中除上述烃类化合物外,还含有非烃类化合物。
前言原油作为一种重要的能源,如何安全、高效、节能地输送日益受到人们的重视。
管道输送具有运输量大、占地少、密闭安全、便于管理和集中控制、能耗少、运费低等优点,在运输原油方面有很大的优势。
世界上很多原油都是含蜡量较多的原油,我国大部分原油更以“三高”著称,即原油含蜡量高、凝点高、低温下粘度高,这种原油流变性复杂。
在较高温度下[4],原油中的蜡以分子形式溶解于液态原油中,当温度降低到一定程度时,蜡逐渐结晶析出,并以固体颗粒形式悬浮于液态原油中,温度进一步下降,则蜡晶进一步增多并相互连接,形成三维网络结构,原油的液态组份包含于其中,原油整体失去流动性,形成胶凝[23] [30]。
在原油输送中,为保证管道操作系统的高效性,这要求管道输送时保持稳定和连续的流量,避免管线停输。
然而,计划停输和事故停输是不可避免的。
在管道停输后,若不及时采取措施,将会导致凝管,这种恶性事故在油田集输管道上和长距离大口径输油干线上都曾发生过。
胶凝原油具有一定的固体特征,如有一定的弹性和结构强度等。
但是胶凝原油的固体特征是有条件的,一旦外加的应力超过原油的结构强度或屈服值,蜡晶网络结构就被破坏,大量的液态油重新获得自由流动的能力,因此,为了再启动管道,所应用的压力必须大于平常的操作压力以克服胶凝原油的胶凝强度。
由此可见,研究原油的启动特性对指导实践具有重要的理论和实际意义。
本文以文献综述为主,查阅了一些有关胶凝原油触变性、屈服特性和粘弹性以及同轴旋转粘度计等方面的国内外相关文献。
同时,制定实验方案,进行了大庆原油启动特性的初步研究。
通过查阅文献和实验研究,加深对原油流变特性的认识。
第1章含蜡原油的组成及其流变性的影响因素概述1.含蜡原油的组成大庆原油是典型的石蜡基原油[1] [2],含蜡量高,凝点高。
含蜡原油是一种复杂的烃类和非烃类混合物,按其对原油低温流变性的影响来说,可把原油的组成分为三大部分,即常温时为液态的油、常温时为晶态的蜡、胶质和沥青质。
原油含蜡质管道流动特性研究摘要总所周知,我国是一个盛产高含蜡、高凝点原油的国家,要使其能自由流动,加热输送是主要方法之一。
本文基于流变学、传热学、流体力学等学科的基本理论,对原油管道中含蜡质运行过程进行了分析,由于原油沿管道向前输送中物性参数及流动状态都要变化,因此本文作了含蜡原油在管道中的流动特性的分析,建立了含蜡原油加热输送管道水力、热力计算模型并提出了相应的求解方法。
通过对输油管道加热站间管段的模拟计算,对其正常运行时沿程温降、摩阻损失的影响因素,以及保持管道安全运行的最小允许输量进行了特定分析。
本文还利用了基于C++ Builder可视化编程语言开发了适合工程应用的热油管道水力、热力及最小输量计算软件进行了数值模拟,并得到沿程油温分布、进站油温、沿程摩阻及一定工况下最小允许输量等参数。
近几年由于我国大庆、辽河等一批老油田产量的不断下降,东北原油外输管道已达不到满输量的运行,因此,随着输量的减少和管道运行温度的降低,两加热站间呈现非牛顿流型和层流状态的管段越来越长。
当两加热站间温降较大,管内原油有流态变化时,油流的流动状态会发生很大变化,由于传统的热力、水力计算方法没有考虑原油物性和流态的变化,会在计算上造成较大的误差。
本文的研究可为含蜡原油管道的运行管理提供科学的依据,对于指导油田的输油生产、管道的安全运行和节能降耗具有重要意义。
同时准确了解含蜡原油管道的沿程温降规律、摩阻损失及一定工况条件下的允许输量,可为在低输量运行期含蜡原油管道合理安排运行方案,为管道稳定运行提供帮助。
关键词:含蜡质原油管道运输;流动特性;沿程油阻;允许最小输量第1章:绪论1.1 输油管道的发展概况1.1.1 国外输油管道发展概况管道运输的发展与能源工业,特别是石油工业的发展密切相关。
现代管道运输始于19世纪中叶。
1865年在美国宾西法尼亚州建成第一条原油管道,直径50mm,长近10km. 20世纪初管道运输才有进一步发展,但真正具有现代规模的长距离输油管道则始于第二次世界大战。
第一章1.流变学(Rheology)是研究物质变形与流动的科学。
实际物质在外力作用下怎样变形与流动,这是物质本身固有的性质,可以称其为物质的流变性(即物质在外力作用下变形与流动的性质)。
流变学就是研究物质流变性的科学。
2.流变学研究的是纯弹性固体和牛顿流体状态之间所有物质的变形与流动问题。
3.流变学更注重不同物质的力学性质与其内部结构之间的关系4.流变学中物质所受到的力用应力或应力张量表示5.流变学中用应变或应变速率表示物质的运动状态即变形或流动。
6.流体质点就是流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理实体。
7.物质状态的变化称为变形,而物质连续无限地变形就是流动。
8.流变学中有三种基本变形:简单拉伸、简单剪切和体积压缩与膨胀9.反映材料宏观性质的数字模型称为本构方程,亦称为流变状态方程和流变方程10.对一些简单的流变性制的描述也可以用曲线形式表示,如剪切应力与剪切速率关系曲线,粘度随剪切速率变化曲线等,并称之为流变曲线。
第二章1.散体系是指将物质(固态、液态或气态)分裂成或大或小的粒子,并将其分布在某种介质(固态、液态或气态)之中所形成的体系。
2.分散体系可以是均匀的也可以是非均匀的系统。
均匀分散体系是由一相所组成的单相体系,而非均匀分散体系是指由两相或两相以上所组成的多相体系。
3.非均匀分散体系必须具备2个条件:①在体系内各单位空间所含物质的性质不同;②存在着分界的物理界面。
4. 对非均匀分散体系,被分散的一相称为分散相或内相,把分散相分散于其中的一相称为分散介质,亦称外相或连续相。
5.尽管非牛顿流体在微观上往往是非均匀的多相分散体系,或非均匀的多相混合流体,但在用连续介质理论或宏观方法研究其流变性问题时,一般可以忽略这种微观的非均匀性,而认为体系为一种均匀或假均匀分散体系。
6.对非牛顿流体,没有恒定的粘度概念,不同的剪切速率下有不同的表观粘度,这是非牛顿流体的一大特点。
7、一受力就有流动,但剪切应力与剪切速率的不成比例,随着剪切速率的增大,剪切应力的增加速率越来越大,即随着剪切速率的增大,流体的表观粘度增大,这种特性被称为剪切增稠性(shear thickening)。