加速度合成定理.ppt
- 格式:ppt
- 大小:1.34 MB
- 文档页数:26
8-4 点的加速度合成定理三种加速度(相对于三种运动,瞬时量)绝对加速度动点相对静系运动的加速度相对加速度动点相对动系运动的加速度牵连加速度牵连点的加速度8-4点的加速度合成定理a a r a e a动点--M 点定系--OXYZ动系--O ˊXˊYˊZˊ牵连点—动系O ˊXˊYˊZˊ上M 点M O r r r ''=+r x i y j z k '''''''=++为常矢量,,其中考虑到考虑到则M a O dr v r x i y j z k x i y j z k dt '''''''''''''==++++++eO O edv dv a a dt dt ''===r rr dv dv a dt dt==点的加速度合成定理—当牵连运动为平动时,动点在某瞬时的绝对加速度等于它在该瞬时的牵连加速度与相对加速度的矢量和。
2222222222o M a d r d r d x d y d z a i j k dt dt dt dt dt '''''''==+++a e r a a a =+上式中每一个矢量都有大小和方向两个要素,因此上式总共包含有12个要素,其中若仅有两个要素是未知的,则此矢量式可解。
由于加速度包括沿轨迹切线方向的切向加速度和沿主法线方向的法向加速度两个分量,所以在最一般的情况下练习1凸轮在水平面上向右作减速运动,如图所示。
设凸轮半v a径为R,图示瞬时的速度和加速度分别为和。
求杆AB在图示位置时的加速度。
解:取动点和动系动点:顶杆AB上的A点动系:固结凸轮上的参考系绝对运动:铅垂方向直线运动相对运动:半圆周运动牵连运动:水平直线平移8该瞬时杆AB 的速度方向向上练习1—速度分析绝对速度:大小未知,方向沿杆AB 向上牵连速度:,方向水平向右相对速度:大小未知,方向沿凸轮圆周的切线根据速度合成定理ϕϕsin sin e r vv v ==a v e v r v e v v =练习1—加速度分析绝对加速度:大小未知,方向沿直线AB 牵连加速度:,沿水平方向相对加速度法向分量:,沿着,指向半圆板圆心相对加速度切向分量:大小未知,垂直于,假设指向右下a a e a e a a OA OA O。
点的加速度合成定理点的合成运动中,加速度之间的关系比较复杂,因此,我们由简单到复杂,先分析动系作平移的情形。
即先研究牵连运动为平动时的加速度合成定理,然后再介绍牵连运动为转动时的加速度合成定理。
一.牵连运动为平移时点的加速度合成定理设O ´x ´y ´z ´为平移参考系,由于x ´、y ´、z ´各轴方向不变,可使与定坐标轴x 、y 、z 分别平行。
其中动点M 相对于动系的相对坐标为 x ´、y ´、z ´,由于 i ´、j ´、k ´ 为平移动坐标轴的单位常矢量,则点M 的相对速度和相对加速度为(1) (2)利用点的速度合成定理及牵连运动为平移而得到:两边对时间求导,并注意到因动系平移 ,故i ´、j ´、k ´ 为常矢量,于是得到其中e O O a a V==11/,所以有:r e a a a a += (3)这就是牵连运动为平移时点的加速度合成定理:当牵连运动为平移时,动点在某瞬时的绝对加速度等于该瞬时它的牵连加速度与相对加速度的矢量和。
例 题 1如下图所示,铰接四边形O 1A=O 2B=100mm , O 1O 2=AB ,杆O 1A 以等角速度 ω=2rad/s 绕轴O 1转动。
AB 杆上有一套筒C ,此套筒与杆CD 相铰接,机构的各部件都在同一铅垂平面内。
试求:当 ϕ=60º时,CD 杆的加速度。
k j i v ''+''+''=z y x rk j i a ''+''+''=z y x r k j i vv ''+''+''+='z y xO a k j i v a ''+''+''+='zy x O a解:1. 运动分析动点:CD 上的C 点; 动系:固连于AB 杆于是三种运动分别为:绝对运动:C点的上下直线运动; 相对运动:C点沿AB 直线运动;牵连运动:随AB 杆铅垂平面内曲线平移2.加速度分析:其中由于动系作平移,故动系AB 杆上各点的加速度相同,因此动系AB 杆上与动点套筒C 相重合点C1的加速度即牵连加速度,如下图所示,则:22!1/4.0s m A O a a a A c e =*===ω由平行四边形法则,得2/346.0sin s m a a a e a CD =*==ϕ二.牵连运动为转动时点的加速度合成定理当牵连运动为转动时,加速度合成定理与牵连运动为平移时所得到的结果是不相同的。