理论力学课件 15.1 牵连运动为平移时点的加速度合成定理
- 格式:pdf
- 大小:193.90 KB
- 文档页数:4
8-4 点的加速度合成定理三种加速度(相对于三种运动,瞬时量)绝对加速度动点相对静系运动的加速度相对加速度动点相对动系运动的加速度牵连加速度牵连点的加速度8-4点的加速度合成定理a a r a e a动点--M 点定系--OXYZ动系--O ˊXˊYˊZˊ牵连点—动系O ˊXˊYˊZˊ上M 点M O r r r ''=+r x i y j z k '''''''=++为常矢量,,其中考虑到考虑到则M a O dr v r x i y j z k x i y j z k dt '''''''''''''==++++++eO O edv dv a a dt dt ''===r rr dv dv a dt dt==点的加速度合成定理—当牵连运动为平动时,动点在某瞬时的绝对加速度等于它在该瞬时的牵连加速度与相对加速度的矢量和。
2222222222o M a d r d r d x d y d z a i j k dt dt dt dt dt '''''''==+++a e r a a a =+上式中每一个矢量都有大小和方向两个要素,因此上式总共包含有12个要素,其中若仅有两个要素是未知的,则此矢量式可解。
由于加速度包括沿轨迹切线方向的切向加速度和沿主法线方向的法向加速度两个分量,所以在最一般的情况下练习1凸轮在水平面上向右作减速运动,如图所示。
设凸轮半v a径为R,图示瞬时的速度和加速度分别为和。
求杆AB在图示位置时的加速度。
解:取动点和动系动点:顶杆AB上的A点动系:固结凸轮上的参考系绝对运动:铅垂方向直线运动相对运动:半圆周运动牵连运动:水平直线平移8该瞬时杆AB 的速度方向向上练习1—速度分析绝对速度:大小未知,方向沿杆AB 向上牵连速度:,方向水平向右相对速度:大小未知,方向沿凸轮圆周的切线根据速度合成定理ϕϕsin sin e r vv v ==a v e v r v e v v =练习1—加速度分析绝对加速度:大小未知,方向沿直线AB 牵连加速度:,沿水平方向相对加速度法向分量:,沿着,指向半圆板圆心相对加速度切向分量:大小未知,垂直于,假设指向右下a a e a e a a OA OA O。
※第四节 牵连运动为转动时点的加速度合成定理。
取动点为小球M ,动系固结于圆盘,定系固结于地面。
动点M 的的相对运动为匀速率圆周运动,相对速度为r v ,故相对加速度r a 的大小为r v a a rn r r 2== (a )方向指向圆心O 。
牵连运动是圆盘以匀角速度e ω绕O 轴转动,故动点M 的牵连速度e v 的大小为r v e e ω=,方向与r v 一致;牵连加速度e a 的大小为2e n e e r a a ω== (b )方向也指向圆心O 。
由于r v 和e v 方向相同,故点M 的绝对速度的大小为=+=+=r e r e a v r v v v ω常数可见,动点M 的绝对运动也是也是匀速圆周运动,于是M 的绝对加速度a a 的大小为()r e r e r e a n aa v r v r r v r r v a a ωωω22222++=+=== (c )方向也是指向圆心O 。
考虑到(a )、(b )两式,有r e r e a v a a a ω2++= (d ) 从上式可以看出,动点的绝对加速度除了牵连加速度和相对加速度两项外,还多了一项r e v ω2,可见牵连运动为转动时,动点的绝对加速度并不等于牵连加速度与相对加速度的矢量和,而多出的一项与牵连转动e ω和相对速度r v 有关,多出的这一项称为科氏加速度。
牵连运动为转动时点的加速度合成定理为:牵连运动为转动时,动点在某瞬时的绝对加速度等于该瞬时它的牵连加速度、相对加速度与科氏加速度的矢量和。
即C r e a a a a a ++= (14-7)式中a c 为科氏加速度,它等于动系角速度矢与点的相对速度矢的矢积的两倍,即r e C v ωa ⨯=2 (14-8)刚体的角速度矢的模等于角速度的大小,其方位沿刚体的转轴,指向用右手螺旋法则来确定(右手四指代表角速度的转向,拇指表示角速度矢的指向)。
C a 的大小为θωsin 2r e C v a =其中θ为e ω与r v 两矢量间的最小夹角。